

Safety function

In order to protect people from hazardous machine movements Elan hinge monitoring switches monitor (interlock) the position of rotatable guards such as doors in fencing or as flaps or hoods on machine cladding.

As interlocking devices without guard locking to EN 1088 in combination with the safety-orientated part of a machine control system the devices ensure that

- hazardous machine movements may only be initiated and performed when the guard is closed,
- opening of the guard stops the hazardous machine movements, and
- it is not possible for the machine to restart when the guard is open.
- However, they do not serve to lock guards in the case of hazardous aftertravel movements due to the existing kinetic energy. In this case a locking function is also required or an interlocking device with locking as offered in various designs in the product range of the Schmersal Group.

The tried and tested properties and features of the hinge monitoring switches of the TESZ type series have been further refined and the new design of the TESF type series now features numerous additional advantages and possibilities.

Standard contact complement: $2 \mathrm{NC} / 2 \mathrm{NO}$ contacts

Contact complement

The hinge monitoring switch of the TESF type series is supplied as standard with 2 positively opening NC contacts (safety contacts) and 2 NO contacts for signalling purposes. Three connection systems are available (see loc. cit.).

The contacts, with a switching capacity of $\geq 5 \mathrm{~V} / 1 \mathrm{~mA} .$. $\leq 250 \mathrm{VAC} / 2.5 \mathrm{~A}$, are featured in two independent units each with $1 \mathrm{NC} / \mathrm{NO}$ combination.

Control category

With 2-channel signal processing in connection with a suitable sequencecontrolled circuit, the contact complement of the TESF devices as interface to the safety-orientated part of the machine control system permits their use in applications up to control category 4 to EN 954-1.

In connection with the special feature of the inherent manipulation protection and the successful principle of action of the Elan hinge monitoring switch, it is not usually necessary to double up on the devices even for "higher" control categories.

Front installation:
Guard closed

Opening angle of the rotatable guard: ... $18 \mathbf{0}^{\circ}$
The guard can always be opened up to 180° due to the flat construction of the TESF devices and a recess in the switch housing to accommodate the moving hinge wing.

Front installation:
Guard opened through 180°

Inside installation:
Guard closed

Inside installation

In addition to attachment to the front side (refer to figures on page 2), the new housing design permits the TESF devices to also be installed in a concealed position in the gap between the fixed part (door post, door frame) on the one hand and the moving part of a guard (protective door, protective flap) on the other, for example in (Al) profile systems or similar.

Inside installation:
Guard opened through 180°

Switching points

The hinge monitoring switches of the TESF type series come as standard with a preset switching point at an opening angle of approximately 3° respectively $\leq 5^{\circ}$ with involvement of the positive break cycle, i.e. in a linear movement, the safety contacts open starting from an appropriate actuation lift. Reference point is the closed guard.

There are two versions depending on installed position, i.e. depending on whether a device is to be attached to the front side of a guard
(front installation) or to the inside (see left), i.e. installed in a concealed position in the gap between the moving part and the fixed part of the guard:

- Opening angle set for front installation*
- Opening angle set for inside installation*.
* With higher shock and vibration impact or for other installation situations devices can also be supplied with a different switching point (>3 opening angle) on request. A distinction must be made here too between front installation and inside installation.

Warning: The switching point specified at a 5° opening angle is to be understood for devices in new state with consideration of the positive break cycle. At the end of mechanical lifetime the opening angle is $\leq 8^{\circ}$ (including positive break angle).

Particularly with reference to finger and hand protection we recommend that this switching point be considered when considering safety (refer also to "Standards and regulations" as well as the table "Determining the door gap as dependent on opening angle, door width and overlap").

Use in Al profile systems

 etc.It is not necessary to make a distinction with respect to the different dimensions of commercially available (Al) profile systems. The design of the
fixing bore holes as longitudinal slits permits the use of hinge monitoring switches of the TESF type series for all profile dimensions 30 ... 60 mm (also in cases of "mixed" profile dimensions).

Design and safety-related advantages

The special advantage - both of the devices of the tried and tested TESZ type series and the new TESF type series - is the simple assembly because the switch for position monitoring of the guard is already integrated into the hinge, i.e. both functions form an advantageous single assembly.

Depending on the rotating movement the switch plunger actuates an appropriately shaped switch cam on the pin of the hinge, thereby positively opening one or several safety contacts against the pressure of the plunger reset spring of the switch blocks. Vice-versa: if a guard is closed again the safety contact(s) close by friction lock and signalise to the sequential circuit the safe state of the guard.

Inherent protection against manipulation

By comparison with other solutions the principle of action of the Elan hinge monitoring switches at the same time constitutes an inherently safe design against the bypassing of an interlocking device, i.e. additional measures to guard against manipulation of the protective function, as addressed for example in EN 1088 paragraph 5.7, are not necessary in these devices.

Additional selection

aspects

- We recommend the TESF versions "with mounting aid" specially for (Al) profile systems. However, this mounting aid - in the form of small end stops - requires a gap of 22 mm between the fixed and the moving part of a guard.

TESF version with mounting aid

TESF version without mounting aid

A TESF version "with mounting aid" is not recommended if the devices are to be used in applications without a suitably wide door gap (<22 mm), for example, in the case of sheet metal or plexiglass structures where such a wide gap does not come into question for practical reasons.

- Hinge monitoring switches of the TESF type series are supplied as standard with the corresponding fixing material either including additional hinge or without.

Connection systems

The hinge monitoring switches of the TESF type series come with any of the following connection systems:

- Screw terminals for the following wire cross-sections
- solid 0.14 ... 1.5 mm
- stranded with wire-end ferrules $0.25 \ldots 1 \mathrm{~mm}$

In order to facilitate series connections the TESF versions with screw terminals come as standard with two cable outlets (with thread M 16×1.5, sealed with blind plugs).

- Cage clamp terminals (WAGO Cage Clamp) with test pick-off for the following wire cross-sections
- solid 0.25 ... 1 mm
- stranded with wire-end ferrules $0.25 \ldots 0.75 \mathrm{~mm}$

A generously dimensioned connection space is available for wiring.

Standards and regulations

From a safety point of view the devices comply with the requirements of EN 1088 (interlocking devices in connection with isolating protective devices - guiding principles for design and selection), IEC EN 60947-5-1 (low voltage switchgear and control gear) and the test principles GS-ET 15 (positively opening position switches) of the Berufsgenossenschaft der Feinmechanik and Elektrotechnik, Cologne, as well as the requirements of UL 508.

The users must observe the following standards:

- EN 294: Safety distances against contact of upper limbs with hazardous points
- EN 349: Minimum distances to avoid contact with body parts
- EN 999: Arrangement of protective devices with respect to approach speeds of body parts
- EN 953: Isolating protective devices - general requirements on the design and construction of fixed and moving protective devices

Refer also to:

- Assembly instructions (page 18)
- Table (page 19): "Determining the door gap as dependent on operating angle, door width and overlap"

- Plug connections
- M12 x 1 for 24 VDC supply voltage (8 pole)*
- M16 x 1.5 for 250 VAC supply voltage (10 pole)

With the plug versions a choice can be made between "plug top" and "plug bottom" (versions with two plug connections: on request)

- (on request); with ASi Safety at Work interface.

Design

The hinge monitoring switches of the TESF type series are suitably tough for their intended industrial use. The hinges are made of die cast zinc and the hinge pins are made of stainless steel 1.4305. The plastic materials used are made of self-extinguishing, hardly flammable polyamide.

The class of protection of the devices is IP 65.

TESF type key

A type key is provided below for a better understanding of the different versions:

Product range: refer to page 8 et seq

* Warning: The versions TESF.../ST24... must only be used in PELV circuits according to EN 60204.

$$
\begin{aligned}
& \text { free }=\text { without mounting aid } \\
& \text { "A" }=\text { with mounting aid }
\end{aligned}
$$

free $=$ with additional hinge "S" = without additional hinge

TESF/S = additional hinge without mounting aid
TESFA/S = additional hinge with mounting aid
TESF-14 = adjustment tool
"/0" = front installation
"180" = inside installation
"/U" = for customer adjustment including adjustment tool
". 1 " = plug bottom side
". 2 " = plug top side
free = screw terminals
"CC" = cage clamp terminals
"ST24" = plug 24 V
"ST230" = plug 230 V

Hinge monitoring switches
TESZ series
for 30 mm profiles

Features

- Simple installation to all popular 30 mm aluminium pro-
files, square tubes and conventional machine cladding.
- Material:
- Housing: glass-fibre-reinforced thermoplastic, selfextinguishing to UL 94-V-0
- Hinge: Al Mg Si 0.5 F25
- Hinge pin: steel 1.4104

Cross references

- General description: refer to page 5
- Contact arrangement selectable: see below
- Calculation door angle/door gap: refer to page 30
- Assembly instructions: refer to page 31
- Technical data: refer to page 32

Options (on request)

- Other switching angles: $5^{\circ}, 8^{\circ}$ (standard: 4°)
- With adapter for AS Interface Safety at Work
- Plug connection

TESZ 1110../30

Representation of the contacts in non-actuated state (guard closed), switching angle in new state. Tolerance 4^{0-2}.

BIA 994005

Scope of delivery
Hinge switch with or without additional hinge, fixing material

Product table		
Type	Version	Part number
	With additional hinge	
TESZ 10/30	1 NC	1348710
TESZ 102/30	$1 \mathrm{NC} / 1 \mathrm{NO}$	1348713
TESZ 110/30	2 NC	1348722
TESZ 1102/30	$2 \mathrm{NC} / 1 \mathrm{NO}$	1348716
TESZ 1110/30	3 NC	1348719
	Without additional hinge	
TESZ 10/S/30	1 NC	1348711
TESZ 102/S/30	$1 \mathrm{NC} / 1 \mathrm{NO}$	1348714
TESZ 110/S/30	2 NC	1348723
TESZ 1102/S/30	$2 \mathrm{NC} / 1$ NO	1348717
TESZ 1110/S/30	3 NC	1348720

1) Punch-out bore hole M20 $\times 1.5$
2) Maximum opening angle 135°

Hinge monitoring switches
TESZ series
for 35 mm profiles

Features

- Simple installation to all popular 35 mm aluminium pro-
files, square tubes and conventional machine cladding.
- Material:
- Housing: glass-fibre-reinforced thermoplastic, selfextinguishing to UL 94-V-0
- Hinge: Al Mg Si 0.5 F25
- Hinge pin: steel 1.4104

Cross references

- General description: refer to page 5
- Contact arrangement selectable: see below
- Calculation door angle/door gap: refer to page 30
- Assembly instructions: refer to page 31
- Technical data: refer to page 32

Options (on request)

- Other switching angles: $5^{\circ}, 8^{\circ}$ (standard: 4°)
- With adapter for AS Interface Safety at Work
- Plug connection

TESZ 1110../35

[^0]```
Test symbol (with respect to the basic design)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{6} \\
\hline
\end{tabular}
BIA 994006
```

Scope of delivery
Hinge switch with or without additional hinge, fixing material

| Product table |  |  |
| :--- | :--- | :--- |
| Type | Version | Part number |
|  | With additional hinge |  |
| TESZ 10/35 | 1 NC | 1348730 |
| TESZ 102/35 | 1 NC/1 NO | 1348733 |
| TESZ 110/35 | 2 NC | 1348742 |
| TESZ 1102/35 | 2 NC/1 NO | 1348736 |
| TESZ 1110/35 | 3 NC | 1348739 |
|  | Without additional hinge |  |
|  | 1 NC | 1348731 |
| TESZ 10/S/35 | 1 NC/1 NO | 1348734 |
| TESZ 102/S/35 | 2 NC | 1348743 |
| TESZ 110/S/35 | 2 NC/1 NO | 1348737 |
| TESZ 1102/S/35 | 3 NC | 1348740 |
| TESZ 1110/S/35 | Additional hinge |  |
|  |  | 1348822 |



1) Punch-out bore hole M20 $\times 1.5$
2) Maximum opening angle $135^{\circ}$

Hinge monitoring switches
TESZ series
for 40 mm profiles

## Features

- Simple installation to all popular 40 mm aluminium pro-
files, square tubes and conventional machine cladding.
- Material:
- Housing: glass-fibre-reinforced thermoplastic, selfextinguishing to UL 94-V-0
- Hinge: AI Mg Si 0.5 F25
- Hinge pin: steel 1.4104


## Cross references

- General description: refer to page 5
- Contact arrangement selectable: see below
- Calculation door angle/door gap: refer to page 30
- Assembly instructions: refer to page 31
- Technical data: refer to page 32


## Options (on request)

- Other switching angles: $5^{\circ}, 8^{\circ}$ (standard: $4^{\circ}$ )
- With adapter for AS Interface Safety at Work
- Plug connection


TESZ 1110..


Representation of the contacts in non-actuated state (guard closed), switching angle in new state. Tolerance $4^{\circ-2}$.


Scope of delivery
Hinge switch with or without additional hinge, fixing material

| Product table |  |  |
| :--- | :--- | :--- |
| Type | Version | Part number |
|  | With additional hinge |  |
| TESZ 10 | 1 NC | 1348760 |
| TESZ 102 | $1 \mathrm{NC} / 1 \mathrm{NO}$ | 1348764 |
| TESZ 110 | 2 NC | 1348776 |
| TESZ 1102 | $2 \mathrm{NC} / 1 \mathrm{NO}$ | 1348768 |
| TESZ 1110 | 3 NC | 1348772 |
|  | Without additional hinge |  |
| TESZ 10/S | 1 NC | 1348761 |
| TESZ 102/S | $1 \mathrm{NC} / 1 \mathrm{NO}$ | 1348765 |
| TESZ 110/S | 2 NC | 1348777 |
| TESZ 1102/S | $2 \mathrm{NC} / 1 \mathrm{NO}$ | 1348769 |
| TESZ 1110/S | 3 NC | 1348773 |



1) Punch-out bore hole $\mathrm{M} 20 \times 1.5$
2) Maximum opening angle $135^{\circ}$

Hinge monitoring switches
TESZ series
for 45 mm profiles

## Features

- Simple installation to all popular 45 mm aluminium pro-
files, square tubes and conventional machine cladding.
- Material:
- Housing: glass-fibre-reinforced thermoplastic, selfextinguishing to UL 94-V-0
- Hinge: Al Mg Si 0.5 F25
- Hinge pin: steel 1.4104


## Cross references

- General description: refer to page 5
- Contact arrangement selectable: see below
- Calculation door angle/door gap: refer to page 30
- Assembly instructions: refer to page 31
- Technical data: refer to page 32


## Options (on request)

- Other switching angles: $5^{\circ}, 8^{\circ}$ (standard: $4^{\circ}$ )
- With adapter for AS Interface Safety at Work
- Plug connection


TESZ 1110../45


Representation of the contacts in non-actuated state (guard closed), switching angle in new state. Tolerance $4^{\circ-2}$.


BIA 994006

Scope of delivery
Hinge switch with or without additional hinge, fixing material

| Product table |  |  |
| :--- | :--- | :--- |
| Type | Version | Part number |
|  | With additional hinge |  |
| TESZ 10/45 | 1 NC | 1348600 |
| TESZ 102/45 | 1 NC/1 NO | 1348601 |
| TESZ 110/45 | 2 NC | 1348602 |
| TESZ 1102/45 | 2 NC/1 NO | 1348603 |
| TESZ 1110/45 | 3 NC | 1348604 |
|  | Without additional hinge |  |
| TESZ 10/S/45 | 1 NC | 1348610 |
| TESZ 102/S/45 | 1 NC/1 NO | 1348611 |
| TESZ 110/S/45 | 2 NC | 1348612 |
| TESZ 1102/S/45 | 2 NC/1 NO | 1348613 |
| TESZ 1110/S/45 | 3 NC | 1348614 |
|  | Additional hinge |  |
|  |  | 1348818 |



1) Punch-out bore hole M20 $\times 1.5$
2) Maximum opening angle $135^{\circ}$

Hinge monitoring switches
TESZR series
for 40 mm profiles with restart inhibit

## Features

- Simple installation to all popular 40 mm aluminium profiles, square tubes and conventional machine cladding.
- With restart inhibit
- Material:
- Housing: glass-fibre-reinforced thermoplastic, selfextinguishing to UL 94-V-0
- Hinge: Al Mg Si 0.5 F25
- Hinge pin: steel 1.4104


## Cross references

- General description: refer to page 5
- Contact arrangement selectable: see below
- Calculation door angle/door gap: refer to page 30
- Assembly instructions: refer to page 31
- Technical data: refer to page 32


## Options (on request)

- Other switching angles: $5^{\circ}, 8^{\circ}$ (standard: $4^{\circ}$ )
- Other hinge versions
- With adapter for AS Interface Safety at Work
- Plug connection



## Restart inhibit

The restart inhibit prevents an unintentional restart of the hazardous movement when the guard is closed. Reset by pressing a restart button.


Picture to the left: The restart inhibit latches in when the guard is opened; safety contacts are open.
Picture to the right: After closing (1) the guard the safety contacts are held in open state by the restart inhibit. Only once the reset button (2) is pressed do the safety contacts close again.


Attention: If reset of restart inhibit is used exclusively to initiate dangerous movements, switch must be replaced after max. 100,000 switching cycles.


TESZR 1110..


[^1]```
Test symbol (with respect to the basic design)
椸 c(UL)us (\$1)
in preparation
```

Scope of delivery
Hinge switch with or without additional hinge, fixing material

Product table		
Type	Version	Part number
	With additional hinge	
TESZR 10	1 NC	1348660
TESZR 102	1 NC/1 NO	1348665
TESZR 110	2 NC	1348670
TESZR 1102	2 NC/1 NO	1348675
TESZR 1110	3 NC	1348680
	Without additional hinge	
TESZR 10/S	1 NC	1348661
TESZR 102/S	1 NC/1 NO	1348666
TESZR 110/S	2 NC	1348671
TESZR 1102/S	2 NC/1 NO	1348676
TESZR 1110/S	3 NC	1348681
	Additional hinge	
TES/S		1348819

1) Punch-out bore hole M20 $\times 1.5$
2) Maximum opening angle 135°
3) Reset button

Hinge monitoring switches
TESZX series
with stainless steel hinge

Features

- Simple installation to all popular 40 mm aluminium profiles, square tubes and conventional machine cladding.
- Housing: glass-fibre-reinforced thermoplastic, selfextinguishing to UL 94-V-0
- All outside metallic parts are made of stainless steel:
- Hinge 1.4404
- Hinge pin 1.4301
- Bolts, nuts and washers 1.4303

Cross references

- General description: refer to page 5
- Contact arrangement selectable: see below
- Calculation door angle/door gap: refer to page 30
- Assembly instructions: refer to page 31
- Technical data: refer to page 32

Options (on request)

- Other switching angles: $5^{\circ}, 8^{\circ}$ (standard: 4°)
- With restart inhibit
- With adapter for AS Interface Safety at Work
- Plug connection

TESZX 1110. .

[^2]
Test symbol (with respect to the basic design)

[䲩 C(IL)us (S)

BIA 994006

Scope of delivery
Hinge switch with or without additional hinge, fixing material

Product table		
Type	Version	Part number
	With additional hinge	
TESZX 10	1 NC	1348620
TESZX 102	$1 \mathrm{NC} / 1 \mathrm{NO}$	1348621
TESZX 110	2 NC	1348622
TESZX 1102	$2 \mathrm{NC} / 1 \mathrm{NO}$	1348623
TESZX 1110	3 NC	1348624
	Without additional hinge	
TESZX 10/S	1 NC	1348625
TESZX 102/S	1 NC/1 NO	1348626
TESZX 110/S	2 NC	1348627
TESZX 1102/S	2 NC/1 NO	1348628
TESZX 1110/S	3 NC	1348629
	Additional hinge	
		1348690

1) Punch-out bore hole M20 $\times 1.5$
2) Maximum opening angle 135°

Technical data

for TESZ type series

Device type	TESZ
Regulations	IEC 60947, EN 60947, DIN VDE 0660, EN 1088
Type of switch	Interlocking device without guard locking
Rated operating voltage U_{e} max.	250 V
Utilisation category to DIN VDE 0660 Teil 200	AC-15, DC-13
Rated operating current I_{e} *	AC-15: 2 A/250 VAC, DC-13: 1 A/24 VDC
Thermal rated current $\mathrm{I}_{\text {th }}$	2.5 A
Short-circuit protection	gG 2 A
Air clearance and creepage to DIN VDE 0110	Pollution degree 3, overvoltage category III
Proof of positive opening	2.5 kV peak voltage
Positive opening angle (after switching point)	Form Zb ; approx. 5° (equal to $2 \times 0.5 \mathrm{~mm}$ contact aperture)
Contact system	cross-point system
Contact material	AgNi 10, gold plated
Contact force	0.5 N per contact point $=1 \mathrm{~N}$ per contact
Switching of small loads	$\mathrm{min} .5 \mathrm{VDC} / 1 \mathrm{~mA}$
Switching frequency (recommended)	$120 \mathrm{~s} / \mathrm{h}$
Chatter time	$<2 \mathrm{~ms}$ at $100 \mathrm{~mm} / \mathrm{s}$
Climatic resistance	to DIN EN 60068-2-78
Temperature range	$-25 \ldots+65^{\circ} \mathrm{C}$
Installed position	random
Mechanical life	min. 1×10^{6} switching cycles, restart-inhibit TESZR max. 1×10^{5} switching cycles
Shock resistance to DIN EN 60068-2-27	$30 \mathrm{~g} / 18 \mathrm{~ms}$
Vibration resistance to DIN EN 60068-2-6	$20 \mathrm{~g}, 10 \ldots 200 \mathrm{~Hz}$
Terminal designation to DIN EN 50005 and DIN EN 50013	refer to contact diagrams
Mechanical loading capacity	max. torque $3 \mathrm{kN} / \mathrm{m}$ at 1 m distance of the hinges
Housing material	Plastic, glass-fibre-reinforced, self-extinguishing, highly inflammable
Connection system	Screwed connection up to $2 \times 0.5 \ldots 2.5 \mathrm{~mm}^{2}$ (with wire-end ferrules TESZ..10, TESZ..110, TESZ..102: solid up to $0.75 \mathrm{~mm}^{2}$, litz wire up to $1.5 \mathrm{~mm}^{2}$ with wire-end ferrule
Switching points	New state: NC max. 4°, NO approx. 13° Attainment of the serviceable life limit: NC approx. 6°, NO approx. 15°
Rated insulation voltage U_{i}	250 V , test voltage $2,000 \mathrm{~V}$
Class of protection of the housing to DIN EN 60529	IP 65
Sealing	Flat seals, V rings
Approvals	CSA, UL, BIA
Cable entry	$2 \times \mathrm{M} 20 \times 1.5$

Hinge monitoring switches
TESF type series
Determining the door gap as dependent on opening angle, door width and overlap

Opening angle " β " of the door	3°	4°	5°	6°	7°	8°	9°	10°
Door width "C" in mm	Door gap "D" in millimetres with overlap "B" $=0 \mathrm{~mm}$							
100	5.2	7.0	8.7	10.4	12.2	13.9	15.6	17.4
150	7.8	10.5	13.1	15.7	18.3	20.9	23.5	26.0
200	10.5	13.9	17.4	20.9	24.4	27.8	31.3	34.7
250	13.1	17.4	21.8	26.1	30.5	34.8	39.1	43.3
300	15.7	20.9	26.1	31.3	36.5	41.7	46.9	52.1
350	18.3	24.4	30.5	36.6	42.6	48.7	54.7	60.7
400	20.9	27.9	34.8	41.8	48.7	55.6	62.5	69.4
450	23.5	31.4	39.2	47.0	54.8	62.6	70.4	78.1
500	26.2	34.9	43.6	52.2	60.9	69.6	78.2	86.8
550	28.8	38.3	47.9	57.5	67.0	76.5	86.0	95.5
600	31.4	41.8	52.3	62.7	73.1	83.5	93.8	104.1
650	34.0	45.3	56.6	67.9	79.2	90.4	101.6	112.8
700	36.6	48.8	61.0	73.1	85.3	97.4	109.4	121.5
750	39.2	52.3	65.3	78.4	91.4	104.3	117.3	130.2
800	41.8	55.8	69.7	83.6	97.4	111.3	125.1	138.8
850	44.5	59.3	74.0	88.8	103.5	118.2	132.9	147.5
900	47.1	62.7	78.4	94.0	109.6	125.2	140.7	156.2
950	49.7	66.2	82.8	99.3	115.7	132.1	148.5	164.9
1,000	52.3	69.7	87.1	104.5	121.8	139.1	156.4	173.6
1,050	54.9	73.2	91.5	109.7	127.9	146.1	164.2	182.2
1,100	57.5	76.7	95.8	114.9	134.0	153.0	172.0	190.9
1,150	60.2	80.2	100.2	120.1	140.1	160.0	179.8	199.6
1,200	62.8	83.7	104.5	125.4	146.2	166.9	187.6	208.3
1,250	65.4	87.2	108.9	130.6	152.3	173.9	195.4	217.0
1,300	68.0	90.6	113.2	135.8	158.4	180.8	203.3	225.6
1,350	70.6	94.1	117.6	141.0	164.4	187.8	211.1	234.3
1,400	73.2	97.6	122.0	146.3	170.5	194.7	218.9	243.0
1,450	75.8	101.1	126.3	151.5	176.6	201.7	226.7	251.7
1,500	78.5	104.6	130.7	156.7	182.7	208.7	234.5	260.3

Calculation example

The actual door gap " D 1 " is calculated from the door gap " D " calculated according to the above table less the overlap of door and frame "B":

D1 = D - B
Example: A door made of 40 mm aluminium profile with a length of 950 mm is to be secured with a TESF. According to the technical data sheet the safety contact of the TESF opens at 3° in new state (5° at end of useful life). In new state a door gap of approx. 49.7 mm is derived from the above table. The actual door gap, calculated using the above formula D1 = D - B produces (49.7-40=9.7); D1 = 9.7 mm . At the end of useful life there is a door gap of approx. 82.8 mm and an actual door gap of ($82.8-40=42.8$); D1 $=42.8 \mathrm{~mm}$.

[^0]: Representation of the contacts in non-actuated state (guard closed), switching angle in new state. Tolerance $4^{\circ-2}$.

[^1]: Representation of the contacts in non-actuated state (guard closed), switching angle in new state. Tolerance $4^{\circ-2}$.

[^2]: Representation of the contacts in non-actuated state (guard closed), switching angle in new state. Tolerance $4^{\circ-2}$.

