Description

These switches are used mainly on machines where the hazardous conditions persist even after the machine has been switched off. Mechanical parts such as pulleys, saw blades, etc., could continue to move after the machine is switched off or could still be hot or under pressure. Thus, the switches can also be used if individual guards are only to be opened under certain conditions. Versions with mode 1 and 3 (safety outputs active when guard closed and locked) are interlocks with guard locking acc. to ISO 14119; the product is labelled with the symbol shown.

Maximum safety with a single device

 The NS series switches are conics. As a result, the maximum PL e and SIL 3 safety levels can still be achieved through the use of a single device on a guard. This avoids expensive wiring in the field and allows faster installation. Inside the control cabinet, the two electronic safety outputs must be connected to a safety module with OSSD inputs or to a safety PLC.
Series connection of several switches

PLe+SIL3
One of the most important features of the NS series is the possibility of connecting up to 32 sensors in series, while still maintaining the maximum safety levels PL e laid down in EN 13849-1 and SIL 3 acc. to EN 62061. This connection type is permissible in safety systems which have a safety module at the end of the chain that monitors the outputs of the last NS switch.
The fact that the PL e safety level can be maintained even with 32 sensors connected in series demonstrates the extremely secure structure of each single device.

Series connection with other devices

The NS series features two safety inputs and two safety outputs, which can be connected in series with other Pizzato Elettrica safety devices. This option allows the creation of safety chains containing various devices. For example, stainless steel safety hinges (HX BEE1 series), RFID sensors (ST series) and door lock sensors (NG series) can be connected in series while still maintaining the maximum PL e and SIL 3 safety levels.

RFID actuators with high coding level

The NS series is provided with an electronic system based on RFID technology to detect the actuator. This allows to provide each actuator with different coding and makes it impossible to tamper with a device by using another actuator of the same series. Millions of different coding combinations are possible for the actuators. They are therefore classified as high level coded actuators, according to EN ISO 14119.

Dustproof

The switch is provided with a through hole for inserting the actuator. Thanks to this unique feature, any dust that enters the actuator hole can always come out on the opposite side instead of remaining inside. Moreover, the lock pin is provided with a diaphragm seal, making the system suitable for critical environments with a high level of dust.

Centring

The switch is provided with a wide centring inlet for the actuator pin. This solution makes it easier to align the actuator and the opening hole on the head during installation. Moreover, this solution drastically reduces the probability of a collision between the switch and the actuator, making it possible to install the device even on inaccurately closing guards.

Holding force of the locked actuator

2 N The strong interlocking system guarantees a maximum actuator holding force of $\mathrm{F}_{1 \text { max }}=2100 \mathrm{~N}$.

Head and release devices with variable orientation, not detachable

The upper part of the switch, which contains the release devices, can be rotated and is permanently connected to the lower part, which contains the outputs for the electrical connection. After loosening the fastening screws, the individual modules can be rotated in 90° steps. As a result, a single device can be used to realise various configurations without the installation technician needing to concern himself with the correct assembly of various parts.
The fastening screws are provided with protection caps to prevent dirt build-up and thereby simplify cleaning.

Modularity

The innovative design of the auxiliary releases makes possible a wide range of combinations of auxiliary releases with lock, escape release buttons or screwdriver releases with front and rear mounting.
The electrical connection is also highly flexible: outputs are available with cables as well as with connectors, which can be oriented axially or laterally.

Six LEDs for immediate diagnosis

As the LEDs have been designed for quick immediate diagnosis, the status of each input and output is highlighted by one specific LED. This makes it possible to quickly identify the interruption points in the safety chain, which device is released, which guard is opened and any errors inside the device. All of this at a glance, without needing to decode complex flashing sequences.

Holding force of the unlocked actuator

The inside of each switch features a device which holds the actuator in its closed position. Ideal for all those applications where several guards are unlocked simultaneously, but only one is actually opened. The device keeps all the unlocked guards in their position with a retaining force of approx. 20 N , stopping any vibrations or gusts of wind from opening them.

Function for protecting against recoil forces

If a guard is closed too quickly or with so much force that the recoil would cause it to open again, a special function in the NS switch prevents locking. This function prevents the immediate locking of the guard if the lock signal is applied. This protects the switch against recoil forces that occur during instantaneous locking, thus avoiding possible damage to the device.

Key release device and escape release button

The key release device (auxiliary release) is used to permit unlocking of the actuator only by personnel in possession of the key. The device also functions with no power supply and, once actuated, prevents the guard from being locked.
The escape release button allows actuator release and immediate opening of the guard. Generally used in machines within which an operator could inadvertently become trapped, it faces towards the machine interior, to allow the operator to exit even in the event of a power failure. The button has two stable states and can be freely extended in length with suitable extensions (see accessories).
Both devices can be positioned on the four sides of the switch. As a result, it can be installed both towards the interior and towards the exterior of the machine.

Three safety output actuation modes

The device is available with 3 different actuation modes for safety outputs:

- mode 1: safety outputs active with inserted and locked actuator, for machines with inertia;
- mode 2: safety outputs active with inserted actuator, for machines without inertia;
- mode 3: a first safety output active with actuator inserted and locked and a second safety output active with actuator inserted, for special applications.

Protection against tampering

Each actuator of the NS series is supplied with four protection caps. Not only do the caps prevent dirt from accumulating and simplify cleaning, they also block access to the fastening screws of the actuator. As a result, standard screws can be used instead of tamper-proof screws.

Jointed actuator for inaccurately closing guards

All NS series actuators are articulated, thereby allowing the actuator pin to be safely guided into the switch through the centring hole. As a result, the actuator and switch do not need to be precisely aligned during installation. In addition, the device can thereby be used on guards with a minimum actuation radius of 150 mm without the actuation pin needing to be angled.

Front and side mounting

Integrated in the housing of the NS series is a hole for inserting the actuator pin. Fixing holes are also provided in the robust body for front and side mounting.
This makes it easier to mount the switch during lateral installation: the switch is directly mounted without needing to rotate the module that
 contains the hole for inserting the actuator pin. The fixing holes can be sealed with the protection caps provided for this purpose. Dirt deposits and tampering attempts are thereby prevented.

High protection degree

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to EN 60529. They can therefore be used in all environments where maximum protection degree of the housing is required. Due to their special design, these devices are suitable for use in equipment subjected to cleaning with high pressure hot water jets. These devices meet the IP69K test requirements according to ISO 20653 (water jets with 100 bar and $80^{\circ} \mathrm{C}$).

External device monitoring

On request, the switch can be supplied with EDM function (External Device Monitoring). In this case, the switch itself checks the proper function of the devices connected to the safety outputs. These devices (usually relays or safety contactors) must send a feedback signal to the EDM input, which checks that the received signal is consistent with the state of the safety outputs.

product options
sold separately as accessory

Code structure

NS D4AZ1SMK-F41E36LP30

Operating principle

D
locked actuator with de-energised solenoid.
mode 1: OS safety outputs active with inserted and locked actuator

E locked actuator with energised solenoid. mode 1: OS safety outputs active with inserted and locked actuator

G locked actuator with de-energised solenoid. mode 2: OS safety outputs active with inserted actuator

H locked actuator with energised solenoid. H mode 2: OS safety outputs active with inserted actuator
locked actuator with de-energised solenoid.
L mode 3: first safety output OS1 active with inserted and locked actuator, second safety output OS2 active with inserted actuator locked actuator with energised solenoid. mode 3: first safety output OS1 active with inserted and locked actuator, second safety output OS2 active with inserted actuator

Inputs and outputs

2 safety inputs IS1, IS2
2 safety outputs OS1, OS2
1 signalling output O3: actuator inserted
31 signalling output O4: actuator locked 2 solenoid activation inputs IE1, IE2 1 reset input 13 Note: Supplied only together with actuator
2 safety inputs IS1, IS2
2 safety outputs OS1, OS2
41 signalling output O3: actuator inserted
1 signalling output O 4 : actuator locked
2 solenoid activation inputs IE1, IE2
1 programming / reset input I3
2 safety inputs IS1, IS2
2 safety outputs OS1, OS2
1 signalling output O3: actuator inserted
5
1 signalling output O4: actuator locked 2 solenoid activation inputs IE1, IE2
1 programming / reset input I3
1 feedback input EDM I5
Note: Not available with mode 3

Auxiliary release at front and back

AZ
release by means of screwdriver at front only available for operating principle D, G and L
key release at front only available for operating principle D, G and L
key release at front and escape release button at back
only available for operating principle D, G and L release by means of screwdriver at front and escape release button at back only available for operating principle D, G and L
without release
only available for operating principle E, H and M
Without release at front and escape release button
TE at back
only available for operating principle E, H and M

Release button length

for max. 15 mm wall thickness (standard)
LP30 for max. 30 mm wall thickness
LP40 for max. 40 mm wall thickness
LP50 for max. 50 mm wall thickness

Actuator extraction force

actuator extraction force 20 N (standard)
E36 actuator freely removable
E37 actuator extraction force 40 N

Actuator

low level coded actuator VN NS-F40 the switch recognises any type F40 actuator

F41
high level coded actuator VN NS-F41 the switch recognises one single type F41 actuator

Connection type

integrated M12 connector (standard)
0.2 cable, length: 0.2 m , with M12 connector

2 cable, length: 2 m (standard)

10 cable, length: 10 m

Cable or connector type

A PVC cable $12 \times 0.14 \mathrm{~mm}^{2}$ (standard)
PVC cable $8 \times 0.34 \mathrm{~mm}^{2}$
B for stand-alone connection
Note: without inputs IS1, IS2, 15 and without output 04
PUR cable, halogen-free, $8 \times 0.34 \mathrm{~mm}^{2}$
E for stand-alone connection Note: without inputs IS1, IS2, 15 and without output 04
M M12 connector, 12-pole (standard)
P $\quad \begin{aligned} & \text { M12 connector, 8-pole, for stand-alone } \\ & \text { Note: without inputs is1, is2, I5 and without output } 04\end{aligned}$
Q M12 connector, 8-pole, for series connection with Y connectors Note: without inputs IE2, 13,15 and without output 03

Output direction, connections

D cable or connector, lateral
S cable or connector, at bottom
Code structure for actuator
VN NS-F40

Actuator

F40
low level coded actuator
the switch recognises any type F40 actuator
F41 high level coded actuator
the switch recognises one single type F41 actuator

Main features

- Actuation without contact, using RFID technology
- Digitally coded actuator
- SIL 3 and PL e also with series connection of up to 32 devices
- Max. actuator holding force: 2100 N
- SIL 3 and PL e with a single device
- Protection degrees IP67 and IP69K
- 6 signalling LEDs

Quality marks:

EC type examination certificate: M6A171075157020 UL approval:
TÜV SÜD approval:
E131787
EAC approval:
Z10 0751570025

In compliance with standards:

EN ISO 14119, EN 60947-5-3, EN 60947-1,
IEC 60204-1, EN 60204-1, EN ISO 12100, IEC 60529, EN 60529, EN 61000-6-2,
EN 61000-6-3, BG-GS-ET-19, IEC 61508-1, IEC 61508-2, IEC 61508-3, IEC 61508-4, SN 29500, EN ISO 13849-1, EN ISO 13849-2, EN 62061, EN 61326-1, EN 61326-3-1,
EN 61326-3-2, EN 50581, ETSI 301 489-1,
ETSI 301 489-3, ETSI 300 330-2, UL 508, CSA 22.2 No. 14

Compliance with the requirements of:

Machinery Directive 2006/42/EC, EMC Directive 2014/30/EC, RED Directive 2014/53/EU,
RoHS directive 2011/65/EU, FCC Part 15.

Features approved by UL

Electrical Ratings: $24 \mathrm{Vdc}, 0,25 \mathrm{~A}$.
Input supplied by 24 Vdc , Class 2 source or limited voltage limited energy
Environmental Ratings: Types 1, 4X, 12, 13.

Features approved by TÜV SÜD

Protection degree: IP67, IP69K
Ambient temperature: $-20^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
PL, category: Cat $2 / 4, \mathrm{PL}$ d / e
SIL: SIL 2/3, SIL CL 2/3
In compliance with standards: EN ISO 14119:2013, EN 60947-5-3:2013, EN 61508-1:2010 (SIL 3),
EN 61508-2:2010 (SIL 3), EN 61508-3:2010 (SIL 3), EN 61508-4:2010 (SIL 3), EN 62061:2005/A2:2015
(SIL CL 3), EN ISO 13849-1:2015 (Cat. 4, PL e).
Complies with machinery directive 2006/42/EC
Please contact our technical department for the list of approved products.

Technical data

Housing made of glass fibre reinforced technopolymer, self-extinguishing and shock-proof Versions with $12 \times 0.14 \mathrm{~mm}^{2}$ or $8 \times 0.34 \mathrm{~mm}^{2}$ integrated cable, length 2 m , other lengths from 0.5 to 10 m on request
Versions with integrated M12 stainless steel connector
Versions with 0.2 m cable and M12 connector, other lengths from $0.1 \ldots 3 \mathrm{~m}$ on request Protection degree: IP67 acc. to EN 60529
IP69K acc. to ISO 20653 (Protect the cables
from direct high-pressure and high-temperature jets)

General data

| Safety parameters | SIL | PL | Cat. | DC | PFH $_{\mathbf{D}}$ | MTTF $_{\mathbf{D}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Monitoring function: actuator locked - Mode 1 | 3 | e | 4 | High | $1.23 \mathrm{E}-09$ | 2657 |
| Monitoring function: actuator present - Mode 2 | 3 | e | 4 | High | $1.22 \mathrm{E}-09$ | 1840 |
| Monitoring function: actuator locked - Mode 3 | 2 | d | 2 | High | $1.50 \mathrm{E}-09$ | 2627 |
| Monitoring function: actuator present - Mode 3 | 2 | d | 2 | High | $1.49 \mathrm{E}-09$ | 3987 |
| Dual-channel control for locking function of the actuator | 3 | e | 4 | High | $2.04 \mathrm{E}-10$ | 2254 |
| Single-channel control for locking function of the actuator | 2 | d | 2 | High | $2.04 \mathrm{E}-10$ | 2254 |

Interlock, no contact, coded, with guard locking: Level of coding acc. to EN ISO 14119:

Mission time:
Ambient temperature:
Max. actuation frequency
with actuator lock and release:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Maximum force before breakage $F_{1 \max }$:
Max. holding force $F_{z h}$:
Maximum clearance of locked actuator:
Released actuator extraction force:
type 4 acc. to EN ISO 14119
low with F40 actuator High with F41 actuator
20 years
$-20^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
600 operating cycles/hour
1 million operating cycles
$0.5 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~mm} / \mathrm{s}$
2100 N acc. to EN ISO 14119
1615 N acc. to EN ISO 14119
4 mm
$\sim 20 \mathrm{~N}$

Power supply electrical data

Rated operating voltage $U_{\text {e }}$ SELV:
Operating current at U_{e} voltage:
Rated insulation voltage U_{i} :
Rated impulse withstand voltage $U_{\text {imp }}$:
External protection fuse:
$24 \mathrm{Vdc} \pm 10 \%$
40 mA min.; 0.4 A max. with activated solenoid; 1.2 A with activated solenoid and all outputs at maximum power
32 Vdc
1.5 kV
type gG fuse 2 A or equivalent device

Overvoltage category:
Electrical endurance:
Solenoid duty cycle:
Solenoid consumption:
Pollution degree: III
1 million operating cycles
100\% ED (continuous operation)
9 W max.
3 acc. to EN 60947-1

Electrical data of inputs IS1/IS2/I3/IE1/IE2/I5/EDM

Rated operating voltage $U_{e 1}: \quad 24 \mathrm{Vdc}$
Rated current consumption $\mathrm{I}_{\mathrm{e} 1}$: 5 mA

Electrical data of OS1/OS2 safety outputs

Rated operating voltage $\mathrm{U}_{\mathrm{e} 2}$:
Output type:
24 Vdc
Maximum current per output $\mathrm{I}_{\mathrm{e} 2}$: 0.25 A
Minimum current per output $I_{\text {m2 }}^{\text {e2 }}$:
Thermal current $\mathrm{I}_{\mathrm{th} 2}$:
Utilization category:
Short circuit detection:
Overcurrent protection:
Internal self-resettable protection fuse:
0.5 mA

Internal self-resettable protection fuse:
0.25 A
$D C 13 ; U_{e 2}=24 \mathrm{Vdc}, I_{\mathrm{e} 2}=0.25 \mathrm{~A}$
Yes
Yes
1.1 A

Duration of the deactivation impulses at the safety outputs: < $300 \mu \mathrm{~s}$
Permissible maximum capacitance between outputs: < 200 nF
Pemissible maximum capacitance between output and ground: < 200 nF
Activation time of safety outputs OS1 and OS2
after deactivation of safety inputs IS1, IS2:
Activation time upon unlocking the actuator:
Activation time upon removal of the actuator:
Maximum delay for EDM status change:
typically 7 ms , max. 15 ms typically 7 ms , max. 12 ms typically 120 ms , max. 200 ms 500 ms

Electrical data of O3/O4 signalling outputs

Rated operating voltage $\mathrm{U}_{\mathrm{e} 3}$:
24 Vdc
Output type:
PNP
Maximum current per output I_{e} :
Utilization category:
Short circuit detection:
Overcurrent protection:
Internal self-resettable protection fuse:
0.1 A

DC13; $U_{e 3}=24 \mathrm{Vdc}, \mathrm{I}_{\mathrm{e} 3}=0.1 \mathrm{~A}$
No
Yes

RFID sensor data

Assured operating distance $S_{a 0}$:
Assured release distance S_{ar} :
Rated operating distance S_{n} :
Repeat accuracy:
Differential travel:
RFID transponder frequency:
Max. switching frequency:

2 mm
6 mm (actuator not locked)
10 mm (actuator locked)
3 mm
$\leq 10 \% S_{n}$
$\leq 20 \% \mathrm{~s}_{\mathrm{n}}$
$125 \mathrm{kHz}{ }^{\mathrm{n}}$
1 Hz

Actuation mode of the OS1 and OS2 safety outputs

Mode 1
Safety outputs OS1 and OS2 are active when the actuator is inserted and locked.

In case of machines with or without inertia of the dangerous elements.
Safety category of the safety outputs: PL e, SIL 3

Mode 2
Safety outputs OS1 and OS2 are active when the actuator is inserted.

In case of machines without inertia of the dangerous elements.
Safety category of the safety outputs: PL e, SIL 3.

Mode 3 凹

Safety output OS1 is active when the actuator is inserted and locked and IS1 is active. Safety output OS2 is active when the actuator is inserted and IS2 is active.

In case of machines with or without inertia of the dangerous elements
Safety category of the safety outputs: PL d, SIL 2.

Selection table for switches with high level coded actuators

Selection table for switches

To order a product with lateral connection replace character \mathbf{S} with character \mathbf{D} in the order codes shown above. Example: NS D4AZ1SMK \rightarrow NS D4AZ1DMK To order a product with EDM input replace number $\mathbf{4}$ with number $\mathbf{5}$ in the codes shown above. Example: NS D4AZ1SMK \rightarrow NS D5AZ1SMK Legend: \downarrow interlock with lock monitoring acc. to EN ISO 14119

Selection table for actuators

The use of RFID technology in NS series devices makes them suitable for several applications. Pizzato Elettrica offers two different versions of actuators, in order to best suit customers' specific needs. Type F40 actuators are all encoded with the same code. This implies that a device associated with an actuator type F40 can be activated by other actuators type F40.
Type F41 actuators are always encoded with different codes. This implies that a device associated with an actuator type F41 can be activated only by a specific actuator. Another F41 type actuator will not be recognised by the device until a new association procedure is carried out (reprogramming). After reprogramming, the old actuator F41 will no longer be recognized.
Reprogramming of the actuator can be performed repeatedly.

Complete safety system

The use of complete and tested solutions guarantees the electrical compatibility between the NS series switches and the safety modules from Pizzato Elettrica, as well as high reliability. The switches have been tested with the modules listed in the adjacent table.

NS series switches can be used as individual devices provided that the safety outputs be evaluated by a Pizzato Elettrica safety module (see table for combinable safety modules).

Possibility of series connection of multiple switches for simplifying the wiring of the safety system, whereby only the outputs of the last switch are evaluated by a Pizzato Elettrica safety module (see table with compatible safety modules). Each NS series switch is provided with two signalling outputs which are activated when the guard is closed (O3) or locked (O4). Depending on the specific requirements of the system that has been realised, the signals of the signalling outputs can be evaluated by a PLC.

Switches	Compatible safety modules	Safety module output contacts		
		Instantaneous safety contacts	Delayed safety contacts	Signalling contacts
NS ••••1•••	CS AR-05••••	3NO	1	1NC
	CS AR-06••••	3NO	1	1NC
	CS AR-08••••	2NO	1	1
	CS AT-0•••••	2NO	2 NO	1NC
	CS AT-1•••••	3NO	2NO	1
	CS MP••••••		page 277	
	CS MF••••••		page 305	

All NS series switches can be connected, provided that compatibility is checked, to safety modules or safety PLCs with OSSD inputs.

Possibility of series connection of multiple switches for simplifying the wiring of the safety system, whereby only the outputs of the last switch are evaluated by a Pizzato Elettrica safety module of the CS MP series. Both the safety-relevant evaluation and the evaluation of the signalling outputs are performed by the CS MP series.
The examples listed above refer to applications with NS $\bullet \bullet \bullet \bullet 1 \bullet \bullet \bullet$.

Internal block diagram

LED Function

PWR	Power supply / self-diagnosis
IN	status of safety inputs
OUT	status of safety outputs
ACT	actuator state
LOCK	actuator locked
EDM	state of EDM inputs (NS $\bullet 5 \bullet \bullet 1 \bullet \bullet \bullet$)

The diagram on the side represents the 7 logic functions which interact inside the device.
Function f0 is a basic function and includes the monitoring of the power supply as well as internal, cyclical tests. Function $f 1$ monitors the status of the device inputs, whereas function $f 2$ monitors the presence of the actuator within the detection areas of the switch.
Function $f 4$ checks the actuator lock condition.
Function $f 3$ is intended to activate or deactivate the safety outputs and check for any faults or short circuits in the outputs.
In the EDM versions, the f5 function verifies the consistency of the EDM signal during safety output state changes.
The safety-related function, which combines the sub-functions mentioned above, activates the safety outputs according to the chosen operating mode:

- Both safety outputs OS1/OS2 for switches in mode 1 are activated only if both IS1/IS2 safety inputs are active and the actuator is inserted and locked;
- Both safety outputs OS1/OS2 for switches in mode 2 are activated only if both IS1/IS2 safety inputs are active and the actuator is inserted;
- The safety output OS1 for switches in mode 3 is activated only if the IS1 safety input is active and the actuator is inserted and locked, whereas the safety output OS2 is activated only if the IS2 safety input is active and the actuator is inserted.
The f6 function verifies the coherence of the enable/disable signals of the actuator lock command.
The status of each function is displayed by the corresponding LED (PWR, IN, OUT, ACT, LOCK, EDM), in such a way that the general device status becomes immediately obvious to the operator.

Actuation sequence in mode 1

The switch is supplied with power (PWR LED on, green), the IS1 and IS2 inputs are enabled (IN LED on, green), the OS1 and OS2 safety outputs are disabled (OUT LED off). The actuator is outside of the actuation zone (LED ACT off).

The IE1, IE2 inputs can be used to lock the actuator (LOCK LED on, green). The OS1 and OS2 safety outputs are enabled (OUT LED on, green). The O4 signalling output is activated at the same time. The safe actuation area is extended in order to allow greater play for the actuator.

The IE1, IE2 inputs can be used to unlock the actuator (LOCK LED off). The switch disables the OS1 and OS2 safety outputs and turns off the OUT LED. The O4 signalling output is deactivated at the same time. The safe actuation area returns to the initial values.

When the actuator leaves the actuation limit area, the device turns off the ACT LED and the O3 signalling output.

Actuation sequence in mode 2 and mode 3

In contrast to the above mode 2 description, the safety outputs OS1 and OS2 are activated when the actuator is detected, and deactivated when the actuator is no longer detectable, in mode 3, the OS1 safety output is active with inserted and locked actuator and IS1 active, the OS2 safety output is active with inserted actuator and IS2 active.
Operating states

PWR LED	$\underset{\text { LED }}{\text { IN }}$	$\begin{aligned} & \text { OUT } \\ & \text { LED } \end{aligned}$	$\begin{aligned} & \text { ACT } \\ & \text { LED } \end{aligned}$	$\begin{gathered} \text { LOCK } \\ \text { LED } \end{gathered}$	$\begin{aligned} & \text { EDM } \\ & \text { LED (a) } \end{aligned}$	Device state	Description
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	OFF	Device switched off.
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	POWER ON	Internal tests upon activation.
-	\bigcirc	\bigcirc	*	*	-	RUN	Safety inputs of the device not active.
\bigcirc	-	*	*	*	*	RUN	Activation of safety inputs.
-	©	\bigcirc	*	*	*	RUN	Safety inputs incoherence. Recommended action: check for presence and/or wiring of inputs.
-	*	*	*	$\overline{\widehat{0}}$	*	RUN	Incoherence of solenoid activation inputs IE1, IE2. Recommended action: check for presence and/or wiring of inputs.
\bigcirc	*	*	*	$\bar{\Theta}$	*	RUN	Auxiliary release activated. Deactivate the auxiliary release to lock the actuator
\bigcirc	*	*	\bigcirc	*	*	RUN	Actuator in safe area. O 3 signalling output active.
\bigcirc	*	*	-	\bigcirc	\bigcirc	RUN	Actuator in safe area and locked; O 3 and O 4 outputs active.
\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	RUN	Mode 1 Activation of safety inputs IS1, IS2. Actuator in safe area and locked. O3, O4, OS1 and OS2 outputs active.
\bigcirc	-	\bigcirc	\bigcirc	*	\bigcirc	RUN	Mode 2 Activation of safety inputs IS1, IS2. Actuator in safe area. O3, OS1 and OS2 outputs active.
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	RUN	Mode 3 Actuator present, guard closed and locked, IS1 enabled, IS2 disabled, OS1 enabled, OS2 disabled
\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	RUN	Mode 3 Actuator present, guard closed and not locked, IS1 and IS2 enabled, OS1 disabled, OS2 enabled
$\bar{\Xi}$	*	*	*	*	*	RUN	Rapid flashing: supply voltage too high. Slow flashing: temperature outside admissible range
\bigcirc	*	$\widehat{\widehat{\theta}}$	*	*	*	ERROR	Error on safety outputs. Recommended action: check for any short circuits between the outputs, outputs and ground or outputs and power supply, then restart the device.
\bigcirc	\bigcirc	\bigcirc	$\overline{\widehat{®}}$	\bigcirc	\bigcirc	ERROR	Actuator detection error. Check the physical integrity of the device and, in case of failure, please replace the entire device. If undamaged, realign the actuator with the switch and restart the device.
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ERROR	Internal error. Recommended action: restart the device. If the failure persists, replace the device.
\bigcirc	*	\bigcirc	*	*	\bigcirc	RUN	EDM signal active (external relay off) ${ }^{\text {a }}$
-	-	-	-	-	\bigcirc	RUN	EDM signal not active (external relay on) ${ }^{\text {a }}$
-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\cong	ERROR	Error in the EDMa function

[^0]External device monitoring (EDM)

The NS $\cdot 5 \bullet \bullet 1 \bullet \bullet$ version, in addition to maintaining the operating and safety characteristics of the NS series, allows control of forcibly guided NC contacts of contactors or relays controlled by the safety outputs of the switch itself. As an alternative to the relays or contactors you can use Pizzato Elettrica expansion modules CS ME-03 (see page 267). This check is carried out via the EDM input (External Device Monitoring as defined in EN 61496-1) of the switch.

This version, with the IS safety inputs, can be used at the end of a series of NS switches, up to a maximum number of $\mathbf{3 2}$ devices, while maintaining the maximum PL e safety level and acc. to EN ISO 13849-1 and SIL 3 safety level acc. to EN 62061.
This solution allows you to dispense with the safety module connected to the last device in the chain.
If present, the EDM function must be used.

Connection with safety modules

Connections with CS AR-08•••• safety modules

Connections with CS AR-05•••• / CS AR-06•••• safety modules
Input configuration with manual start (CS AR-05••••) or monitored start (CS AR-06 $\bullet \bullet \bullet \bullet)$

2 channels / Category 4 / up to SIL 3 / PL e

Connections with CS MF•••••, CS MP••••• safety modules The connections vary according to the program of the module Category 4/ up to SIL 3 / PLe

Application example on page 275.

Series connection of several switches

 channels / Category 4 / up to SIL 3 / PL e

Internal connections

Versions with connector			Versions with cable			
$\begin{aligned} & \text { M12 connector, } \\ & \text { 12-pole } \end{aligned}$	M12 connector, 8 -pole stand-alone connection	$\begin{aligned} & \text { M12 connector, } \\ & 8 \text {-pole } \\ & \text { series connection } \\ & \text { with " } \mathrm{Y} \text { " connectors } \end{aligned}$	Cable $12 \times 0.14 \mathrm{~mm}^{2}$ external $\varnothing 6 \mathrm{~mm}$	Cable $8 \times 0.34 \mathrm{~mm}^{2}$ external $\emptyset 7 \mathrm{~mm}$		Connection
3	3	3	White	Blue	A2	Supply input 0 V
10	8	8	Purple	Red	IE1	Solenoid activation input
12	5	1	Red-Blue	Purple	IE2	Solenoid activation input
5	2	1	Pink	Black	O3	Signalling output, actuator inserted
9	1	5(b)	Red	1	04	Signalling output, actuator inserted and locked
8	6	/	Grey	purple-white	13	Actuator programming input / reset
1	1	1	Brown	Brown	A1	Supply input +24 Vdc
2	1	2	Blue	/	IS1	Safety input
6	1	6	Yellow	1	IS2	Safety input
11	1	1	Grey-Pink	1	15	EDM input (a)
4	4	4	Green	Red-White	OS1	Safety output
7	7	7	Black	Black-White	OS2	Safety output
					(a) Avai (b) Avai Y conn	able for $\mathrm{NS} \cdot 5 \bullet \bullet 1 \bullet \cdots \bullet$ version only able for 8 -pole connector, not available for the end of a chain with ctors.

Actuator VN NS-F4•

Accessories

Article	Description
VF KLB300	Extra copy of two locking keys locking keys to be purchased if further keys are needed (standard supply: 2 units). The keys of all switches have the same code. Other codes on request.

Extensions for release button

Article	Description	Drawing	
VN NG-LP30	Metal extension for release button. For max. wall thickness of 30 mm		
VN NG-LP40	Metal extension for release button. For max. wall thickness of 40 mm		
VN NG-LP50	Metal extension for release button. For max. wall thickness of 50 mm		- Metal extensions can be combined with one another to achieve the desired length. - Do not exceed an overall length of 70 mm between the release
VN NG-ERB	Red metal release button		button and the switch. - Use medium-strength thread locker to secure the extensions.

Series connection

To simplify series connections of the devices, various M12 connectors are available that allow complete wiring.
This solution significantly reduces installation times while at the same time maintaining the maximum safety levels PL e and SIL 3 for the interlocking function.
For further information see page 326.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: Legend:
 O off
 $O=$ off
 $=$ on
 $\overline{\widehat{\widehat{O}}}=$ blinking
 O = changing colours

 * $=$ indifferent
 (a) Available for NS $\bullet 5 \bullet \bullet 1 \bullet \bullet \bullet$ versions only

