Lenze

Operating instructions

i550 cabinet frequency inverter

0.25 ... 132 kW

Lenze

General information

General information

Overview

Please read this documentation carefully before installing the inverter and observe the safety instructions!

This document only includes the most frequently asked questions and presents them in a simplified form for a better overview. Detailed technical and functional explanations can be found in the comprehensive product documentation. The complete documentation, further information and tools regarding Lenze products can be found on the Internet: www.Lenze.com

Application as directed

- The product is a piece of professional equipment intended for use by trades, specific professions or industry, and not for sale to the general public. IEC 60050 [IEV161-05-05]
- To prevent personal injury and damage to property, higher-level safety and protection systems must be used!
- All transport locks must be removed
- The product may only be operated under the specified operating conditions and in the specified mounting positions.
- The product is only suitable for installation in control cabinets and, depending on the protection class, for wall mounting.
- The product must only be actuated with motors that are suitable for the operation with inverters.
- The product must not be operated in private areas, in potentially explosive atmospheres and in areas with harmful gases, oils, acids and radiation.

Device-specific standards and directives

- The product meets the protection requirements of the Low-Voltage Directive 2014/35/EU.
- The harmonized standard EN IEC 61800-5-1 is used for the inverters. (Europe).
- UL 61800-5-1 and CAN/CSA C22.2 No. 274 are the North American electrical safety standards.

Relevant standards and directives for the operator

- If the product is used in accordance with the technical data, the drive systems comply with the EN IEC 61800-3 categories (Category C2 is similar to FCC Class A).
- The test voltage for insulation resistance tests between a control potential of 24 V and PE must be measured in accordance with EN IEC 61800-5-1.
- The cables must be installed in accordance with EN IEC 60204-1 or US National Electrical Code NFPA 70/Canadian Electrical Code C22.1.

Commissioning

- Commissioning or starting the operation as directed of a machine with the product is prohibited until it has been ensured that the machine meets the regulations of the Machinery Directive 2006/42/EG and the standard EN IEC 60204-1.
- Commissioning or starting the operation as directed is only permissible if the EMC Directive 2014/30/EU is complied with.
- In residential areas, the product may cause EMC interference. The operator is responsible for executing the interference suppression measures.

License information PROFINET

The PROFINET firmware is optional. The PROFINET firmware uses the following open source software packages under a modified GPL license: eCos Operating System. These components are used at the operating system level of the firmware. The protocol stack does not use source code under a GPL license.
View license: http://ecos.sourceware.org/license-overview.htm|

Lenze

General information

Overview
Information
Identification
Conventions

Lenze

General information

Safety instructions

$\xrightarrow{\text { Basic }}$ Residual hazards

Basic safety instructions

〔. DANGER!

Disregarding the following basic safety instructions and safety information may lead to severe personal injury and damage to property!

- Only use the product as directed.
- Never commission the product in the event of visible damage.
- Never modify the product technically.
- Never commission the product before assembly has been completed
- Never operate the product without the required covers.
- Connect/disconnect all pluggable connections only in deenergized condition!
- Only remove the product from the installation in the deenergized state.
- The product can - depending on their degree of protection - have live, movable or rotating parts during or after operation. Surfaces can be hot. Surfaces can be hot.
- Observe all specifications of the corresponding documentation supplied. This is the condition for safe and trouble-free operation and the achievement of the specified product features.
- The procedural notes and circuit details given in the associated documentation are suggestions and their transferability to the respective application must be checked. The manufacturer of the product does not take responsibility for the suitability of the process and circuit proposals.
- All work with and on the product may only be carried out by qualified personnel. IEC 60364 and CENELEC HD 384 define the qualifications of these persons:
- They are familiar with installing, mounting, commissioning, and operating the product.
- They have the corresponding qualifications for their work.
- They know and can apply all regulations for the prevention of accidents, directives, and laws applicable at the place of use.

4. WARNING!

Functional safety

Certain variants of the product support safety functions (e.g. "Safe Torque Off (STO)") in accordance with the requirements of 2006/42/EC: Machinery Directive [UKCA: S.I. 2008/1597 The Supply of Machinery (Safety) Regulations 2008]. Be sure to observe the instructions in the documentation regarding the integrated safety technology.

NOTE

Device protection
Carry out insulation resistance tests between 24-V control potential terminals and PE. The maximum test voltage must not exceed 110 V DC.

NOTE

Foreseeable misuse

Inverters are not to be operated with DC motors.

Lenze

Safety instructions

$\underset{\text { safety instructions }}{\substack{\text { Basic } \\ \hline}}$
Residual hazards

Residual hazards

The user must take the residual hazards mentioned into consideration in the risk assessment for his/her machine/system. If the above is disregarded, this may result in injuries to persons and material damage!

! D DANGER

Dangerous electrical voltage

During operation and up to 20 minutes after power-off, hazardous electrical voltages may be present at the connections of the product.
The leakage current against earth (PE) is $>3.5 \mathrm{~mA} \mathrm{AC}$ or $>10 \mathrm{~mA} \mathrm{DC}$.
Possible consequences

- Death or serious injury from electric shock

Protective measures

- Any work on the product must only be carried out in a deenergized state.
- Check that no voltage is present!
- After switching off the mains voltage, observe the signs on the product.
- After switching off, wait until the drive is at a standstill.
- Implement the measures required by EN IEC 61800-5-1 or EN IEC 60204-1, i.e. fixed installation and standards-compliant PE connection.

Degree of protection - Protection of persons and device protection

Information applies to the mounted and ready-for-use state

Motor protection

With some settings of the inverter, the connected motor can be overheated.

- E.g. via the operation of self-ventilated motors at low speeds over a long period.
- E.g. by operating DC-injection braking over a long period.

Product

Observe the warning signs on the product!

Dangerous electrical voltage

Before working on the product, check whether all power connections are deenergized!
After mains disconnection, the power terminals carry the hazardous electrical voltage for the time specified next to the symbol!

Electrostatic sensitive devices
Before working on the product, the staff must ensure to be free of electrostatic charge.

High leakage current

Carry out fixed installation and PE connection in compliance with the following standard EN IEC 61800-5-1/EN IEC 60204-1

Hot surface
Use personal protective equipment or wait until the device has cooled down!

Protection of the machine/system

- Drives can reach dangerous overspeeds, e.g. from setting high output frequencies for motors and machines which are not suitable. The inverters do not provide any protection against such operating conditions. Use additional external components for this purpose.
- Only switch the contactor in the motor cable when the inverter is inhibited. Switching them when the inverter is enabled is only permissible when no monitoring components respond.

Motor

In the event of a short circuit of two power transistors, a residual movement of up to $180^{\%}$ number of pole pairs on the motor may occur (e.g. 4-pole motor): Residual movement max. $180^{\circ} / 2=90^{\circ}$).

Lenze

Technical data

	Standards and operating conditions				
(i)	Approvals for the market		CE (European Union)		Further information and certificates of approval: https://www.lenze.com/en-de/products/inverters/frequency-inverters/i550-cabinet-frequencyinverter/
			UKCA (Great Britain)		
			UL (USA)		
A			CSA (Canada)		
			CCC (China)		
			EAC (Belarus, Russia, Kyrgyzstan, Kazakhstan and Armenia)		
			UkSepro (Ukraine)		
II	Environment		RoHS		
(1)	Energy efficiency	High Efficiency	EN IEC 61800-9-2	Class IE2	
	Degree of protection	EN	EN IEC 60529	IP20	Data applies to operationally ready mounted state and not in wire range of terminals
		NEMA	NEMA 250	Type 1 (only protection against accidental contact)	
48	Climate	Operation	EN 60721-3-3:1995 + A2:1997	$3 \mathrm{~K} 3\left(-10 \ldots+60^{\circ} \mathrm{C}\right)$	Operation at a switching frequency of 2 or 4 kHz : Above $+45^{\circ} \mathrm{C}$: reduce rated output current by $2.5 \% /{ }^{\circ} \mathrm{C}$
(4)					Operation at a switching frequency of 8 or 16 kHz : Above $+40^{\circ} \mathrm{C}$: reduce rated output current by $2.5 \% /{ }^{\circ} \mathrm{C}$
					Relative humidity < 95%, condensation not permissible
				$3 \mathrm{C3}$	For chemically active substances
				352	For mechanically active substances
$\rightarrow \square$	Power systems			T, TN	Voltage to earth: max. 300 V
				IT	Apply the measures described for IT systems!
	Mains switching			$3 \times$ within one minute possible	
	Max. motor cable length			device-specific; see technical data in project planning document	
	Max. output frequency			$0 \mathrm{~Hz} \ldots . .599 \mathrm{~Hz}$	
	Overload capacity			Heavy Duty: 200% for $3 \mathrm{~s}, 150 \%$ for 60 s Light Duty 167% for $3 \mathrm{~s}, 125 \%$ for 60 s	

Further standards and operating conditions can be found in the project planning documents.

Lenze

Mechanical installation

Important notes Preparation

Dimensions and assembly

Important notes

NOTE

UL marking
Modular construction - A complete drive consists of a power unit series no. I5D in combination
with a control unit series no. I5C only.

Marquage UL

Conception modulaire - Le système d'entraînement complet comprend un module
d'alimentation de série I5D, impérativement associé à une unité de commande de série I5C.

Lenze

Mechanical installation
Important notes Preparation Dimensions and assembly

© 03/2022 • EN • www.Lenze.com

Lenze

Mechanical installation

Important notes
Preparation
Dimensions and assembly

\square	Dimensions and assembly										
	NOTE										
A	The specified installation clearances are minimum dimensions to ensure a sufficient air circulation for cooling purposes. They do not take into account the bending radii of the connecting cables.										
\square	Several i5xx cabinet inverters can be mounted directly next to each other, regardless of the device size. No installation clearance is required between the devices.										
4	Inverter	Rated power	Weight	H	B	T	H1	B1	Screws	E1	E2
		[kW]	[kg]	[mm]	[mm]	[mm]	[mm]	[mm]		[mm]	[mm]
45	1-phase mains connection 120 V devices										
	155AExxxA	0.25 ... 0.37	1	180	60	130	190	-	2x M5	>50	>50
	155AExxxA	0.75 ... 1.1	1.35	250	60	130	260	-	2x M5	>50	>50
4	1-phase mains connection $230 / 240 \mathrm{~V}$ devices										
	155AExxxB	$0.25 \ldots 0.37$	0.8	155	60	130	165	-	2x M5	>50	>50
	155AExxxB	0.55 ... 0.75	1	180	60	130	190	-	2x M5	>50	>50
!	155AExxxB	1.1 ... 2.2	1.35	250	60	130	260	-	$2 \times \mathrm{M} 5$	>50	>50
	1-/3-phase mains connection 230/240 V devices										
$\Rightarrow \widehat{\square}$	155AExxxD	$0.25 \ldots 0.37$	0.8	155	60	130	165	-	2xM5	>50	>50
	155AExxxD	0.55 ... 0.75	1	180	60	130	190	-	2x M5	>50	>50
	155AExxxD	1.1 ... 2.2	1.35	250	60	130	260	-	2xM5	>50	>50
	155AExxxC	$4 \ldots 5.5$	2.1	250	90	130	260	30	$4 \times \mathrm{M} 5$	>50	>100
	3-phase mains connection 400/480 V devices										
	155AExxxF	0.37	0.8	155	60	130	165	-	2xM5	>50	>50
	155AExxxF	0.55 ... 0.75	1	180	60	130	190	-	2xM5	>50	>50
	155AExxxF	1.1 ... 2.2	1.35	250	60	130	260	-	$2 \times \mathrm{M} 5$	>50	>50
	155AExxxF	3 ... 4	2.3	250	90	130	260	30	$4 \times \mathrm{M} 5$	>50	>100
	155BExxxF	$3 . . .4$	1.35	250	60	130	260	-	$2 \times \mathrm{M} 5$	>50	>50
	155AExxxF	5.5	2.3	250	90	130	260	30	$4 \times \mathrm{M} 5$	>50	>50
	155AExxxF	7.5... 11	3.7	276	120	130	285	60	$4 \times \mathrm{M} 5$	>50	>100
	155BExxxF	7.5... 11	3.7	276	120	130	285	60	$4 \times \mathrm{M} 5$	>50	>100
	155AExxxF	$15 . . .22$	10.3	347	204.5	222	343	180	4x M6	>50	>100
	155BExxxF	$15 . . .30$	8	342	180	165	365	154	4x M6	>50	>100
	155AExxxF	$30 . . .45$	17.2	450	250	230	496	210	$4 \times \mathrm{M} 8$	>95	>120
	155AExxxF	$55 . . .75$	24	536	250	265	596	210	$4 \times \mathrm{M} 8$	>95	>260
	155AExxxF	90 ... 110	35.6	685	258	304	748	210	$4 \times \mathrm{M} 8$	>95	>260

[^0]
Lenze

Electrical installation

[^1]
Lenze

Electrical installation

[^2]
Lenze

Electrical installation

Preparation	Connection diagram	1-phase \| 120 V	1-phase \| 230/240 V	3-phase \| 230/240 V	3 -phase \| 400 V	3-phase \| 480 V	Brake resistor	Control terminals	Relay output
PTC input	Networks	Functional safety	Safe torque off (STO)						

* Overload time $=3 \mathrm{~s}$, recovery time $=12 \mathrm{~s}$

Lenze

Electrical installation

Preparation	Connection diagram	1-phase \| 120 V	1-phase \| 230/240 V
PTC input	Networks	Functional safety	Safe torque off (STO)

3 -phase | $230 / 240 \mathrm{~V}$
3-phase I 400 V
\square
3-phase | 480 V
Brake resistor
Control terminals
Relay output
Safe torque off (STO)

1-phase mains connection 230/240 V (170 V ... $264 \mathrm{~V}, 45 \mathrm{~Hz}$... 65 Hz)
Terminal data

Inverter		155AExxxB (1-phase), I55AExxxD (1/3-phase)			
Rated power	kW	0.25 ... 0.75	1.1 ... 2.2	0.25 ... 2.2	0.25 ... 2.2
Connection		Mains connection X100		PE connection	Motor connection X105
Connection type		Screw terminal		Screw	Screw terminal
Max. cable cross-section	mm^{2}	2.5	6	6	2.5
Stripping length	mm	8	8	10	8
Tightening torque	Nm	0.5	0.7	2	0.5
Required tool		$\begin{gathered} \ominus \\ 0.5 \times 3.0 \end{gathered}$	$\stackrel{\ominus}{0.6 \times 3.5}$	$\stackrel{\circledast}{T \times 20}$	$\begin{gathered} \ominus \\ 0.5 \times 3.0 \end{gathered}$

Rated data and fusing data

* Overload time $=3 \mathrm{~s}$, recovery time $=12 \mathrm{~s}$

[^3]
Lenze

Electrical installation

Lenze

Electrical installation

* Overload time $=3 \mathrm{~s}$, recovery time $=12 \mathrm{~s}$

Lenze

Electrical installation

* Overload time $=3 \mathrm{~s}$, recovery time $=12 \mathrm{~s}$

Lenze

Electrical installation

[^4]
Lenze

Electrical installation

* Overload time $=3 \mathrm{~s}$, recovery time $=12 \mathrm{~s}$

Lenze

Electrical installation

* Overload time $=3 \mathrm{~s}$, recovery time $=12 \mathrm{~s}$

Lenze

Electrical installation

[^5]
Lenze

Electrical installation

Preparation	Connection diagram	1-phase \| 120 V	1-phase \| 230/240 V
PTC input	Networks	Functional safety	Safe torque off (STO)

Brake resistor connection

NOTE

Overload

Possible consequences: Irreversible damage to the brake resistor

- Protect the brake resistor of the inverter against overload with suitable parameterization.
- The thermostat of the brake resistor can be used to establish a safety shutdown to
disconnect the inverter from the mains.
Recommendation: Use intrinsically safe brake resistors to be able to dispense with a separate switch-off device (e.g. a contactor).

\section*{| Short connection cables up to 0.5 m | Long connection cables up to max. 5 m |
| :--- | :--- |}

Up to a cable length of 0.5 m , the cable for the brake. The cable of the brake resistor must be shielded Up to a cable length of 0.5 m , the cable for the brake The maximum length is 5 m
resistor and that of the temperature monitoring can
be twisted. This procedure reduces problems caused by EMC interference For the ter
sufficient.

Brake resistor
Control terminals

Wring to the "brake resistor" connection on the inverter or another component with brake chopper. (2) responds, the voltage supply to the inverter must be disconnected (e.g. switch off the control of the mains contactor).

Lenze

Electrical installation

CANopen / Modbus RTU

The network must be terminated with a resistor at the first and last physical node. At these nodes, set the DIP switch "R" to ON.

You can use the other DIP switches to set the node address and baud rate. When these DIP switches are all in the OFF position: Node address = setting in P510.01, baud rate = setting in P510.02. For Modbus RTU, the baud rate and parity are detected automatically in OFF position.

EtherCAT

You can set the EtherCAT identifier for "Explicit Device Identification" using the rotary encoder switches. When both are in position 0: Identifier = setting in P510.04.

Ethernet/IP / Modbus TCP

You can set the last byte of the IP address using the rotary encoder switches:
192.168.124.<switch position>. When both are in position 0: IP address = setting in P510.01.

POWERLINK

The rotary encoder switches allow you to set the node address (last byte of the IP address) Resulting IP address: 192.168.100.<switch position> When both are in position 0: Node address = setting in 0x23C1:004

PROFIBUS

The network must be terminated with a resistor at the first and last physical node. Activate the bus terminating resistor in the bus connector at these nodes.
Use the DIP switches to set the station address. When all DIP switches are in OFF position Station address = setting in P510.01, the baud rate is detected automatically.

X226	Pin	Assignment	Description
	1	Shield	Additional shielding
	2	n. c.	
	3	RxD/TxD-P	Data line-B (received data/transmitted data +)
	4	RTS	Request To Send (received data/transmitted data, no differential signal)
	5	M5V2	Reference potential (bus terminating resistor -)
	6	P5V2	5 V DC / 30 mA (bus terminating resistor +, OLM, OLP)
	7	n. c.	
	8	RxD/TxD-N	Data line-A (received data/transmitted data -)
	9	n. c.	

PROFINET

The rotary encoder switches have no function

Electrical installation

Preparation	Connection diagram	1-phase \| 120 V	1-phase \| 230/240 V	3-phase \| 230/240 V	3 -phase \| 400 V	3-phase \| 480 V	Brake resistor	Control terminals	Relay output
PTC input	Networks	Functional safety	Safe torque off (STO)						

Functional safety

DANGER!

Uncontrolled start-up

Improper installation of the safety engineering system can cause an uncontrolled starting action of the drives

Possible consequences: Death or severe injuries

- Safety engineering systems may only be installed and commissioned by qualified personnel.
- All wiring must be EMC-compliant.
- All control components (switches, relays, PLC, ...) must comply with the requirements of EN ISO 13849-1 and EN ISO 13849-2.
- Switches, relays with at least IP54 enclosure
- Devices with a degree of protection less than IP54 must always be installed in a control cabinet with a minimum protection class of IP54
- The wiring must be shielded.
- It is essential to use insulated wire end ferrules for wiring
- All safety-relevant cables outside the control cabinet must be protected, e.g. by means of a cable duct.
- Securely eliminate short-circuits and crossed wires according to the specifications of EN ISO 13849-2.
- Please refer to EN ISO 13849-1 and EN ISO 13849-2 for all further requirements and measures.
- In the case of an external force effect on the drive axes, additional brakes are necessary. In particular, please observe the effect of gravitational force on hanging loads!
- For safety-related braking functions, use safety-rated brakes only.
- The user must ensure that the inverter is only operated within the specified environmental conditions in its intended application. Only by doing so can the specified safety-related characteristics be adhered to

DANGER!

Automatic restart when the requirement of the safety function is disabled.
Possible consequences: Death or severe injuries

- You must implement external measures in accordance with EN ISO 13849-1 to ensure that the drive only starts up again after an acknowledgment.

NOTE

Overvoltage

Possible consequences: Destruction of the safety component

- Make sure that the maximum voltage (maximum rated) at the safe inputs does not exceed 32 V DC.

NOTE

Excessive humidity or condensation

Possible consequences: Malfunction or irreparable damage to safety component

- Only commission the safety component when it has acclimatized.

Lenze

Electrical installation

Preparation	Connection diagram	1-phase \| 120 V	1-phase \| 230/240	3-phase \| 230/240 V
PTC input	Networks	Functional safety	Safe torque off (STO)	
Safe torque off (STO)				
! DANGER!				

No "Emergency off" in accordance with EN 60204-1

When using the "Safe torque off (STO)" function, additional measures are required for an
"Emergency off" in accordance with EN 60204-1. There is no electrical isolation between the motor and inverter, no service switch or maintenance switch!
Possible consequences: Death or severe injuries

- An "Emergency off" requires an electrical isolation, e.g. by a central mains contactor.

Control terminals X1

Connection type		Spring terminal, pluggable
Max. cable cross-section	mm^{2}	1.5
Stripping length	mm	9
Required tool		\ominus
Application		0.4×2.5
	SIA	Inputs for connecting active or passive sensors
	GS	Reference potential for SIA and SIB

Specifications for SIA, SIB		minimum	typical	maximum
LOW signal	V	-3	0	+5
HIGH signal	V	+15	+24	+30
Runtime	ms		3	
Switch-off time	ms		50	60
Input current SIA	mA		10	14
Input current SIB	mA		7	12
Input peak current	mA		100	
Test pulse duration	ms			1
Test pulse interval	ms	10		

Connection of active and passive sensors

The connection diagrams shown are only example circuits. The user is responsible for the correct safety-related design and selection of the components!
Active sensor

Safety-related characteristic values and further example circuits can be found in the project planning document

Lenze

Commissioning

Initial switch-on
Keypad control
Terminal control

Extended terminal control

Additional functions

Initial switch-on

! DANGER!

Unexpected states during commissioning

Incorrect wiring can cause unexpected states during the commissioning phase.
Possible consequences: Death, severe injuries, or damage to property

- Wiring must be complete and correct.
- Wiring must be free of short circuits and earth faults.
- The motor circuit configuration (star/delta) must be adapted to the inverter.
- me motor must be connected in-phase (rotating direction).
- Check the "emergency off" function of the overall system.
- Clear hazardous area.
- Observe safety instructions and safety clearances.

Preconditions:

- The power connections must be wired
- The digital inputs X3/DI1 (start/stop), X3/DI3 (reversal) and X3/DI4 (frequency preset 20 Hz) must be wired.
- The analog input X3/Al1 must not be wired or connected to GND.

1. Switch on mains voltage

2. Check readiness for operation.
3. Observe LED status displays "RDY" and "ERR" on the inverter front panel

Lenze

Commissioning

Important notes
Keypad module
Keypad control
Terminal control
Extended
Extended
erminal control
Parameter overview
Favorites
Basic setting
Motor control
Additional functions

Important notes

！DANGER！

Unexpected and dangerous motor movements and system movements

Incorrect settings during commissioning may cause unexpected and dangerous motor and system movements．
Possible consequences：Death，severe injuries，or damage to property
－Clear hazardous area
－Observe safety instructions and safety clearances．
The following plug－on modules are available as accessories for the inverter：
－Keypad module
－WLAN module
－USB module

Keypad module

Commissioning with the keypad module is described on the following pages．

WLAN module

A connection to the WLAN module is established upon entering the connection data．
Default setting：
－IP address：192．168．178．
－SSID：＂Product type＂＿＂10－digit identification＂
－WLAN password：password

Engineering Tool »EASY Starter«

Commissioning and diagnostics can be carried out with the »EASY Starter« engineering tool． For communication，a USB module on the inverter and a standard USB cable（A plug to micro B plug）is required．

SMART Keypad App

The Lenze SMART Keypad App for Android or iOS allows you to diagnose and parameterize an inverter．A WLAN module on the inverter is required for communication．
－Ideal for the parameterization of simple applications such as a conveyor belt．
－Ideal for the diagnostics of the inverter．
The app can be found in the Google Play Store or in the Apple App Store．

遂数
 委教

Android

Lenze

Commissioning

- The motor must be at standstill before parameters can be changed or confirmed
- The settings are saved temporarily until the motor is switched off again. Press and hold the enter key for 3 s to save the settings permanently.

Lenze

Commissioning

Additional functions

Keypad control

Activate temporary keypad control

1. Press the CTRL key to activate the keypad control.
2. Press the enter key to confirm the change.

A
Deactivate temporary keypad control:

1. Press the CTRL key to deactivate the keypad control.
2. Press the enter key to confirm the change.

Activate permanent keypad control:
If the keypad does not have a CTRL key, the motor control is activated via the following parameters:
$4 . \quad$ - Set P200.00 to 1.

- Set P201.01 to 1.
- Set P400.01 to 1.
- Set P400.02 to 1.

Start/control/stop motor with keypad:

1. Press the start key to start the motor.

- The keypad shows the motor speed.

2. Change the frequency setpoint using the up arrow key or the down arrow key.
3. Press the stop key to stop the motor

Reverse rotating direction:

1. Press the R/F key.
2. Press the enter key to confirm the reversal of rotating direction.

Lenze

Commissioning

Initial switch-on
Important notes
Keypad module
Keypad control
Terminal control

$$
\begin{aligned}
& \text { Exxtended } \\
& \text { terminal control }
\end{aligned}
$$

Parameter overview
.
Favorites
Basic setting
Motor control

Quick commissioning - terminal control

The following quick overview with graphical parameter representation is sufficient for commissioning many applications with terminal control. Further setting options are described in this document or in the commissioning document.

1. Load default setting: Set P700.01 to 1.
2. Set the following parameters for V/f characteristic control

- P208.01: Mains voltage
- P303.01: V/f characteristic data: Base voltage
- P303.02: V/f characteristic data: Base frequency
- P210.00: Minimum frequency
- P211.00: Maximum frequency
- P220.00: Acceleration time 1
- P221.00: Deceleration time 1
- P430.02: Analog input 1: Min frequency value
- P430.03: Analog input 1: Max frequency value

3. Save settings: Press and hold the enter key for 3 s .
4. With the wiring shown on the right, the inverter can be operated using the control terminals.

Preset 1 is activated if DI4 is connected.
Preset 2 is activated if DI5 is connected.
Preset 3 is activated if DI4 and DI5 are connected at the same time.

Lenze

Commissioning

Lenze

Commissioning

- a

Additional functions

The most important parameters at a glance

This chapter contains the most important parameters and selections.
You can find a detailed description in the commissioning document:
www.lenze.com/product-information
The parameters are divided into the following function groups:

- Pxxx.xx group 0: Favorites
- P1xx.xx group 1: Diagnostics
- P2xx.xx group 2: Basic setting
- P3xx.xx group 3: Motor control
- P4xx.xx group 4: I/O setting
- P5xx.xx group 5: Network setting
- P6xx.xx group 6: Process controller
- P7xx.xx group 7: Additional functions
- P8xx.xx group 8: Sequencer

Favorites (group 0)

Group 0 contains the configurable favorites that are also contained in the groups 1 to 4 . In the default setting these are the most common parameters for the solution of typical applications.

Lenze

Commissioning

Initial switch-on Important notes

Keypad module
Keypad control
Terminal control
$\underset{\text { Extended }}{\text { Exminal control }}$
Parameter overview
Favorites
Basic setting
Motor control
Additional functions

Favorites (group 0)				
Display code	Name	Possible settings/ Value ranges	Keypad code	Information
P100.00	Output frequency	x.x Hz (read only)		Display of the actual output frequency.
P103.00	Actual current	x.x \% (read only)		Display of the actual motor current.
P106.00	Motor voltage	\times VAC (read only)		Display of the actual motor voltage.
P150.00	Error code	- (Read only)		Error message.
P200.00	Control selection	Flexible I/O	[0]	This selection enables a flexible assignment of the start, stop, and rotating direction commands with digital signal sources.
		Keypad	[1]	This selection enables the motor to start exclusively via the start key of the keypad. Other signal sources for starting the motor are ignored.
P201.01	F-setp.source	Keypad	[1]	The setpoint is specified locally by the keypad.
		Analog input 1	[2]	The setpoint is defined as analog signal via the analog input 1.
		Analog input 2	[3]	The setpoint is defined as analog signal via the analog input 2.
		HTL input	[4]	The digital inputs DI3 and DI4 can be configured as HTL input to use an HTL encoder as setpoint encoder or define the setpoint as a reference frequency ("pulse train").
		Network	[5]	The setpoint is defined as process data object via the network.
		Frequency preset $1 . . .15$	[11] ... [25]	For the setpoint selection, "preset" values can be parameterized and selected. All frequency presets are described in detail in the commissioning manual.
P203.01	Start method	Normal	[0]	After start command, the standard ramps are active.
		DC braking	[1]	After start command, the "DC braking" function is active for the time set in P704.02.
		Flying restart circuit	[2]	After the start command, the flying restart circuit is active.
		Premagnetization	[3]	After start command, the standard ramps are active and the premagnetization of the motor is activated. This reduces the motor current and smoothes the acceleration curve during the starting process (only relevant in the V / f motor control mode).
P203.03	Stop method	Coasting	[0]	The motor has no torque (coasts down to standstill).
		Standard ramp	[1]	The motor is brought to a standstill with the deceleration time 1 P221.00 (or deceleration time 2 P223.00 if activated).
		Quick stop ramp	[2]	The motor is brought to a standstill with the deceleration time (P225.00) set for the "quick stop" function.
		Switch-off positioning	[3]	Is similar to the stop method "standard ramp [1]". Depending on the actual output frequency, however, the inverter delays the beginning of the down-ramping so that the number of motor revolutions until a standstill is reached and thus the stop position is always relatively constant.
P208.01	Mains voltage	230 Veff	[0]	Selection of the mains voltage for actuating the inverter.
		400 Veff	[1]	
		480 Veff	[2]	
		120 Veff	[3]	
P210.00	Min. frequency	0.0 ... 599.0 Hz		Lower limit value for all frequency setpoints.

[^6]
Lenze

Commissioning

Initial switch-on
Important notes
Keypad module
Keypad control
Terminal control
Extended
terminal control
Additional functions

Favorites (group 0)

Display code	Name	Possible settings/ Value ranges	Keypad code	Information
P211.00	Max. frequency	Device for $50-\mathrm{Hz}$ mains: 50 Hz * Device for $60-\mathrm{Hz}$ mains: 60 Hz *		Upper limit value for all frequency setpoints.
P220.00	Acceleration 1	0.0 ... 5.0 ... 3600.0 s		Acceleration time 1.
P221.00	Deceleration 1	0.0 ... 5.0 ... 3600.0 s		Deceleration time 1
P300.00	Motor ctrl mode	Servo control (SC ASM)	[2]	This control mode is used for servo control of an asynchronous motor.
		Sensorless control (SL PSM)	[3]	This control mode is used for sensorless control of a synchronous motor.
		Sensorless vector control (SLVC)	[4]	This control mode is used for sensorless vector control of an asynchronous motor.
		V/f characteristic control VFC open loop	[6]	This control mode is used for the speed control of an asynchronous motor via a V / f characteristic and is the simplest control mode.
		V/f characteristic control (VFC closed loop)	[7]	The control mode is used for speed control of an asynchronous motor via a V/f characteristic with speed feedback.
		Sensorless control (SLSM-PSM)	[8]	This control mode is used for sensorless control of a synchronous motor.
P302.00	V/f characteristic shape	Linear	[0]	Linear characteristic for drives with constant load torque over the speed.
		Square-law	[1]	Square-law characteristic for drives with a square-law load torque over the speed.
		Eco	[3]	Linear characteristic with energy optimization in the partial load operational range.
P303.01	Base voltage	0 ... 230 ... 5000 V *		Base voltage and base frequency define the V / f ratio and thus the gradient of the V / f characteristic. - The V/f base voltage is usually set to the rated motor voltage. - The V / f base frequency is usually set to the rated motor frequency.
P303.02	Base frequency	Device for $50-\mathrm{Hz}$ mains: 50 Hz * Device for $60-\mathrm{Hz}$ mains: 60 Hz *		
P304.00	Limitation of rotation	Only clockwise (CW)	[0]	The motor can only be rotated clockwise (CW). The transfer of negative frequency and PID setpoints to the motor control is prevented.
		Both rotating directions	[1]	Both directions of motor rotation are enabled.
P305.00	Switching frequency	8 kHz var/opt/4 *		Selection of the inverter switching frequency.
P306.01	Overload selection	Heavy duty	[0]	Load characteristic for high dynamic requirements.
		Light Duty	[1]	Load characteristic for low dynamic requirements.
P308.01	Max.load for 60s	30 ... 150 ... 200%		Maximum permissible thermal motor utilization (max. permissible motor current for 60 seconds). With regard to rated motor current (P323.00).
P316.01	Fixed V/f boost	0.0 ... $2.5 \ldots 20.0$ \% *		Constant voltage boost for the V/f characteristic control without feedback.
P323.00	Rated. mot curr.	$0.001 \ldots 1.700 \ldots 500.000 \mathrm{~A}$ *		Setting of the rated motor current according to motor nameplate.
P324.00	Max. current	0.0 ... 200.0 ... 3000.0 \%		Maximum overload current of the inverter. With regard to rated motor current (P323.00).
P400.01	Inverter enable	TRUE	[1]	Assignment of a trigger to the "inverter enable" function. Trigger = TRUE: The inverter is enabled (unless there is another cause for inverter disable). Trigger = FALSE: The inverter is disabled. The motor has no torque and coasts.

* Default setting dependent on the model

Commissioning

Lenze

Commissioning

Initial switch-on Important notes

Keypad module
Keypad control
Terminal control

> Extended temminal control

Parameter overview
Favorites
Basic setting
Motor control

Favorites (group 0)				
Display code	Name	Possible settings/ Value ranges	Keypad code	Information
P400.18	Setp: Preset B0	Digital input 4	[14]	Assignment of a trigger to the "Activate preset (bit 0)" function. Bit with the valency 2° for the bit-coded selection and activation of a parameterized setpoint (preset value). Trigger = FALSE: Bit $=$ " 0 ". Trigger = TRUE: Bit = "1".
P400.19	Setp: Preset B1	Digital input 5	[15]	Assignment of a trigger to the "Activate preset (bit 1)" function. Bit with the valency 2^{1} for the bit-coded selection and activation of a parameterized setpoint (preset value). Trigger = FALSE: Bit = "0". Trigger = TRUE: Bit = "1".
P400.20	Setp: Preset B2	Not connected	[0]	Assignment of a trigger to the "Activate preset (bit 2)" function. Bit with the valency 2^{2} for the bit-coded selection and activation of a parameterized setpoint (preset value). Trigger = FALSE: Bit = " 0 ". Trigger = TRUE: Bit = "1".
P420.01	Relay function	Running	[50]	TRUE if inverter and start are enabled and output frequency > 0.2 Hz. Otherwise FALSE.
		Ready for operation	[51]	TRUE if inverter is ready for operation (no error active, no STO active and DC-bus voltage ok). Otherwise FALSE.
		Operation enabled	[52]	TRUE if inverter and start are enabled. Otherwise FALSE.
		Stop active	[53]	TRUE if inverter is enabled and motor is not started and output frequency $=0$.
		Error active	[56]	TRUE if error is active. Otherwise FALSE.
		Device warning active	[58]	TRUE if warning is active. Otherwise FALSE.
P420.02	DO1 function	Release brake	[115]	Assignment of a trigger to digital output 1. Trigger = FALSE: X3/DO1 set to LOW level. Trigger = TRUE: X3/DO1 set to HIGH level.
P430.01	Al1 input area	0 ... 10 VDC	[0]	Definition of the input range for analog input Al1.
		0 ... 5 VDC	[1]	
		2 ... 10 VDC	[2]	
		$-10 \ldots+10 \mathrm{VDC}$	[3]	
		$4 \ldots 20 \mathrm{~mA}$	[4]	
		0 ... 20 mA	[5]	
P430.02	Al1 freq @ min	-1000.0 ... 0.0 ... 1000.0 Hz		Scaling of the input signal Al1 to the frequency value. - Direction of rotation according to sign. - The standard setpoint source for operating mode "MS: Velocity mode" is selected in P201.01.
P430.03	Al1 freq @ max	-1000.0 ... 50.0 \| 60.0 ... 1000.0 Hz *		
P440.01	A01 output area	Disabled	[0]	Definition of the output range for analog output AO1.
		0 ... 10 VDC	[1]	
		$0 \ldots 5 \mathrm{VDC}$	[2]	
		2 ... 10 VDC	[3]	
		4 ... 20 mA	[4]	
		0 ... 20 mA	[5]	

* Default setting dependent on the model
© 03/2022 • EN • www.Lenze.com

Lenze

Commissioning

Lenze

Commissioning

Lenze

Commissioning

Lenze

Commissioning

Lenze

Troubleshooting

Error message
Error codes
LED status
Support

Error message

If an error is pending, the keypad shows the following information.
Wemane bue UU

प\| Be U	
Lıl	-I $-\square$
REM	AUTO SET.

1 = Error text
2 = Error type ($\mathrm{F}=$ fault, $\mathrm{T}=$ trouble, $\mathrm{W}=$ warning)
3 = Error code (hexadecimal)

- Faults (F) and trouble (T) are displayed continuously. The inverter is disabled
- Warnings (W) are displayed every 2 seconds for a short time. The inverter is probably disabled.

Reset error via keypad

Errors can be reset via the stop key.

- Prerequisite: Cause of error has been eliminated and no blocking time is active
- Press the stop key to reset the error. The motor is stopped.
- Press the start key to cancel the stop

Reset error via terminal control

When terminal control is used, errors can be reset in two ways:

1. Via start signal P400.02 (default setting of digital input 1).

- Prerequisite: Cause of error has been eliminated and no blocking time is active
- The signal at the digital input 1 must drop and then be applied again.

2. Via error reset signal (P400.04, default setting of digital input 2).

- Prerequisite: Cause of error has been eliminated and no blocking time is active.
- The error is reset if a signal is applied to digital input 2.

Troubleshooting

Error message
Error codes
LED status
Support

Lenze

Troubleshooting

Error message Error codes LED status Support

11 Error codes

Error code	Description	Classification	Remedy	Blocking time [s]
6280	Trigger/functions connected incorrectly	Trouble	- Check and correct the assignment of the triggers to the functions. - With keypad or network control, the two functions "Inverter enable" (P400.01) and "Run" (P400.02) can also be set to "Constant TRUE [1]" to start the motor.	0
7180	Motor overcurrent	Trouble	- Check motor load. - Check drive sizing. - Adapt the set error threshold (P353.01).	1
9080	Keypad removed	Trouble	- Connect the keypad again or activate another control source.	0
FF02	Error: Brake resistor overload	Trouble	- Check drive sizing. - Check settings for the brake energy management. - Note! The error will be reset if the thermal load falls below the error threshold (P707.09) of - 20 \%.	5
FF06	Motor overspeed	Trouble	- Adapt the maximum motor speed (P322.00) and the error threshold (P350.01).	1
FF36	Warning: Brake resistor overload	Warning	- Check drive sizing. - Check settings for the brake energy management. - Note! The warning will be reset if the thermal load falls below the warning threshold (P707.08) of - 20 \%.	0
FF37	Automatic start disabled	Trouble	- Deactivate start command and reset error.	0
FF85	Keypad full control active	Warning	- Press the CTRL key to exit control mode.	0

Lenze

Troubleshooting
Error message
Error codes
LED status
Support

π	LED status Meaning of the status LEDs for the inverter:		
(i)	LED "RDY" (blue))	LED "ERR" (red))	State/meaning
	off	off	No supply voltage
			Mains voltage is switched on, inverter initialized
		off	Inverter disabled, ready for operation
T\#	blinking	IHIIIIIIIIII blinking fast	Safe torque off (STO) active, Warning active
		off	Inverter disabled
	-	IHIIITHIIIIIII blinking fast	Inverter disabled, warning active.
45	blinking		Inverter disabled, error active.
		on briefly every 1.5 s	Inverter disabled, no DC-bus voltage.
		off	Inverter enabled
		off	The motor rotates according to the specified setpoint or quick stop active.
\rightarrow		IIIIIIIIIIIII blinking fast	Inverter enabled, warning active. The motor rotates according to the specified setpoint or quick stop active.
		blinking	Inverter enabled, quick stop active as response to a fault.

Lenze

Troubleshooting

Lenze

Disposal

If pollutants are disposed off improperly, they may cause a lasting damage to human health and the environment. Thus, electrical and electronic equipment must be collected separately from unsorted municipal waste so that it may be recycled or disposed of properly. If available, put the components to the company internal disposal from where it is passed on to specialized waste management companies. It is also possible to return the components to the manufacturer. For this purpose, please contact the customer service of the manufacturer. More detailed information on disposal can be obtained from the corresponding specialist firms and the competent authorities. The packaging of the component must be disposed of separately. Paper, cardboard and plastics must be recycled.

[^0]: © 03/2022 • EN • www.Lenze.com

[^1]: © 03/2022 • EN • www.Lenze.com

[^2]: © 03/2022 • EN • www.Lenze.com

[^3]: ** RCD type "F" is only permitted in 1-phase operation (L/N)

[^4]: * Overload time $=3 \mathrm{~s}$, recovery time $=12 \mathrm{~s}$

[^5]: * Overload time $=3 \mathrm{~s}$, recovery time $=12 \mathrm{~s}$

[^6]: © 03/2022 • EN • www.Lenze.com

