Precision Single Limit Switches N01/NB01/SN01

Correct use

Precision single limit switches series N01/NB01/ SN01 are interlocking devices without guard locking (with safety function). The actuator is uncoded (e.g. dog). In combination with a movable safety guard and the machine control, this safety component prevents dangerous machine functions from occurring while the safety guard is open. A stop command is triggered if the safety guard is opened during the dangerous machine function.
For general applications, snap-action switching elements that are not positively driven are used. For usage as safety switches, only the switching element ES588 with positively driven NC contacts is allowed.
This means:

- Starting commands that cause a dangerous machine function must become active only when the safety guard is closed.
- Opening the safety guard triggers a stop command.
- Closing a safety guard must not cause automatic starting of a dangerous machine function. A separate start command must be issued. For exceptions, refer to EN ISO 12100 or relevant C-standards.
Devices from this series can be used as safe position encoders.
Before the device is used, a risk assessment must be performed on the machine, e.g. in accordance with the following standards:
- EN ISO 13849-1, Safety of machinery - Safety-related parts of control systems - Part 1: General principles for design
- EN ISO 12100, Safety of machinery - General principles for design - Risk assessment and risk reduction
- IEC 62061, Safety of machinery - Functional safety of safety-related electrical, electronic and programmable electronic control systems
Correct use includes observing the relevant requirements for installation and operation, particularly based on the following standards:
- EN ISO 13849-1, Safety of machinery - Safety-related parts of control systems - Part 1: General principles for design
- EN ISO 14119, Safety of machinery - Interlocking devices associated with guards - Principles for design and selection
-EN 60204-1, Safety of machinery - Electrical equipment of machines.

Important!

- The user is responsible for the proper integration of the device into a safe overall system. For this purpose, the overall system must be validated, e.g. in accordance with EN ISO 13849-2.

If the simplified method according to section 6.3 of EN ISO 13849-1:2015 is used for determining the Performance Level (PL), the PL might be reduced if several devices are connected in series.
Logical series connection of safe contacts is possible up to PL d in certain circumstances. More information about this is available in ISO TR 24119.

- If a product data sheet is included with the product, the information on the data sheet applies in case of discrepancies with the operating instructions.

Safety precautions

WARNING

Danger to life due to improper installation or due to bypassing (tampering). Safety components perform a personal protection function.

- Safety components must not be bypassed, turned away, removed or otherwise rendered ineffective. On this topic pay attention in particular to the measures for reducing the possibility of bypassing according to EN ISO 14119:2013, section 7.
- Mounting, electrical connection and setup only by authorized personnel possessing special knowledge about handling safety components.

Function

Precision single limit switches are used for positioning and control applications in mechanical and systems engineering.
The switching elements are actuated by means of plungers. Different plunger types and trip dogs are used depending on the application (operating point accuracy and approach speed) (see Figure 2).
In general applications the plunger is actuated by trip dogs in accordance with DIN 69639 which are mounted with an interference fit in trip rails in accordance with DIN 69638.
The switching contacts are actuated when the actuating element is moved from the free position to the end position. The safety contacts Θ are positively opened in this process.

Switching states

The detailed switching states for your switch can be found in Figure 11. All available switching elements are described there.

Actuating element in free position

The safety contacts Θ are closed.

Actuating element in end position

The safety contacts Θ are open.

Mounting

NOTICE

Device damage due to improper mounting and unsuitable ambient conditions.

- Safety switches and actuators must not be used as an end stop.
- Observe EN ISO 14119:2013, sections 5.2 and 5.3, for information about fastening the safety switch and the actuator.
- Observe EN ISO 14119:2013, section 7, for information about reducing the possibilities for bypassing an interlocking device.
- It is imperative that dimension (11-0.5) (distance from switch reference surface to trip dog, see Figure 3) is maintained in safety circuits to ensure safe contact opening.
- Protect the switch head against damage.

Protection against environmental influences

Safety venting valves (see Figure 3, for example) are used to compensate for the pumping action of the plungers. They must not be sealed with paint.

- Mask plunger, plunger guide, safety venting valves and rating plate during painting work!

Changing the actuating direction

Figure 1: Changing the actuating direction

1. Unscrew the locking screw.
2. Set the required direction.
3. Screw in the locking screw again.

Electrical connection

WARNING

Loss of the safety function due to incorrect connection.

- Use only safe contacts (Θ) for safety functions.

Use of the safety switch as an interlocking device for personnel protection

At least one contact Θ must be used. This signals the position of the safety guard (for terminal assignment, see Figure 11).

The following information applies to devices

 with plug connector:- Check that the plug connector is sealed.

The following information applies to devices

 with cable entry:1. Use a suitable tool to open the desired insertion opening.
2. Fit the cable gland with the appropriate degree of protection.
3. Connect and tighten the terminals (for terminal assignment, see Figure 11; for tightening torque values, see technical data).
4. Check that the cable entry is sealed.
5. Close the switch cover and screw in place (tightening torque 0.5 Nm).

Function test

A WARNING

Fatal injury due to faults during the function test. - Before carrying out the function test, make sure that there are no persons in the danger area.

- Observe the valid accident prevention regulations.
Check the device for correct function after installation and after every fault.
Proceed as follows:

Mechanical function test

The actuating element must move easily. Close the safety guard several times to check the function.

Electrical function test

1. Switch on operating voltage.
2. Close all safety guards.
\Rightarrow The machine must not start automatically.
3. Start the machine function.
4. Open the safety guard.
\Rightarrow The machine must switch off and it must not be possible to start it as long as the safety guard is open.
Repeat steps 2-4 for each safety guard.

Inspection and service

WARNING
Danger of severe injuries due to the loss of the safety function.

- In safety circuits, the entire switch must be replaced in case of damage or wear. Replacement of individual parts or assemblies is not permitted.
- Check the device for proper function at regular intervals and after every fault. For information about possible time intervals, refer to EN ISO 14119:2013, section 8.2.
Inspection of the following is necessary to ensure trouble-free long-term operation:
- correct switching function
- secure mounting of all components
- precise adjustment of trip dog in relation to single limit switch
- damage, heavy contamination, dirt and wear
- sealing of cable entry
- loose cable connections or plug connectors.

Information: The year of manufacture can be seen in the bottom, right corner of the rating plate.

Exclusion of liability and warranty

In case of failure to comply with the conditions for correct use stated above, or if the safety instructions are not followed, or if any servicing is not performed as required, liability will be excluded and the warranty void.

Notes about ${ }^{(14)}$ us

The following information applies to devices with plug connector:
For use and applications as per the requirements of © (1L) us, a class 2 power supply according to UL1310 must be used. Connection cables for safety switches installed at the place of use must be separated from all moving and permanently installed cables and un-insulated active elements of other parts of the system which operate at a voltage of over 150 V . A constant clearance of 50.8 mm must be maintained. This does not apply if the moving cables are equipped with suitable insulation materials which possess an identical or higher dielectric strength compared to the other relevant parts of the system.

EU declaration of conformity

The declaration of conformity is part of the operating instructions, and it is included as a separate sheet with the unit.
The original EU declaration of conformity can also be found at: www.euchner.com

Service

If service support is required, please contact:
EUCHNER GmbH + Co. KG
Kohlhammerstraße 16
D-70771 Leinfelden-Echterdingen
Service telephone:
+49 711 7597-500
Fax:
+49 711753316
E-mail:
support@euchner.de

Internet:

www.euchner.de

Parameter	Value
Housing material	Die-cast aluminum, anodized
Plunger material	Stainless steel
Degree of protection	PP 67
Mech. operating cycles	30×10^{6}
Ambient temperature with switching element	
ES550/553/556/558/562/620	$-5 \ldots+80^{\circ} \mathrm{C}$
ES572 (high temp. version)	$\begin{aligned} & -5 \ldots+125^{\circ} \mathrm{C} \\ & \left(200 \mathrm{~h} \text { at } 180^{\circ} \mathrm{C}\right) \end{aligned}$
ES588 \odot	$-25 \ldots+70^{\circ} \mathrm{C}$
ES560/593	$-5 \ldots+125^{\circ} \mathrm{C}$ (manufacturer's data max. $+140^{\circ} \mathrm{C}$)
Installation position	Any
Max. approach speed	
Plunger Chisel D	$20 \mathrm{~m} / \mathrm{min}$
Roller R (slide bearing)	$50 \mathrm{~m} / \mathrm{min}$
Ball K	$8 \mathrm{~m} / \mathrm{min}$
Min. approach speed	$0.01 \mathrm{~m} / \mathrm{min}$
Actuating force with switching element $\geq 15 \mathrm{~N}$	
Switching element	
ES550/553/556/560/562/572/ 593/620	1 changeover contact
ES558	1 NC contact + 1 NO contact
ES588 \odot	1 positively driven contact
Switching principle	
$\begin{aligned} & \text { ES550/553/556/558/560/562/ } \\ & 572 / 593 / 620 \end{aligned}$	Snap-action switching contact
ES588 \odot	Positively driven slow-action switching contact
Switching hysteresis	
$\begin{aligned} & \text { ES550/553/556/560/562/572/ } \\ & 593 / 620 \end{aligned}$	max. 0.1 mm
ES558	0.5 mm
Connection	
ES550/558/560/562/572/593	Soldered connection
ES553/556/588/620	Screw terminal
Tightening torque of screw terminal	
ES553/556 (hexagon socket head screw, AF 1.3 mm)	0.2 Nm
ES588 (slot head screw)	0.3 Nm
ES620 (slot head screw)	0.5 Nm
Conductor cross-section	
ES553/556/620	$0.14 \ldots 1.0 \mathrm{~mm}^{2}$
ES588	max. $1.5 \mathrm{~mm}^{2}$
Contact material	
ES550/553/556/558/572/588/ 593/620	Silver
ES560/562	Gold cross cut contacts
Rated impulse withstand voltage	
with cable entry	$U_{\text {imp }}=2.5 \mathrm{kV}$
with plug connector, 4-pin	$\mathrm{U}_{\text {imp }}=2.0 \mathrm{kV}$
with plug connector, 5 -pin	$\mathrm{U}_{\mathrm{imp}}=1.5 \mathrm{kV}$
Rated insulation voltage	
with cable entry	$\mathrm{U}_{\mathrm{i}}=250 \mathrm{~V}$
with plug connector	$\mathrm{U}_{\mathrm{i}}=50 \mathrm{~V}$
with B-coded plug connector	$\mathrm{U}_{\mathrm{i}}=250 \mathrm{~V}$
Rated short-circuit current	100 A
Rated data for the switching elements	
ES558	
Conventional thermal current $t_{\text {th }}$	10 A
Utilization category AC-15	$230 \mathrm{~V} / 4 \mathrm{~A}$
Utilization category DC-13	$24 \mathrm{~V} / 3 \mathrm{~A}$
Min. switching current at	10 mA
Switching voltage	DC 5 V
Short circuit protection	10 AgG
Mechanical life	Up to 10×10^{6} operating cycles
ES550/553/556/620	
Conventional thermal current $\mathrm{l}_{\text {th }}$	6 A
Utilization category AC-15	$230 \mathrm{~V} / 2 \mathrm{~A}$
Utilization category DC-13	$24 \mathrm{~V} / 2 \mathrm{~A}$
Min. switching current at	10 mA
Switching voltage	DC 24 V
Short circuit protection	6 AgG
Mechanical life	Up to 10×10^{6} operating cycles

ES560	
Conventional thermal current $\mathrm{I}_{\text {th }}$	2 A
Utilization category DC-12	$30 \mathrm{~V} / 1 \mathrm{~A}$
Min. switching current at	1 mA
Switching voltage	DC 5 V
Short circuit protection	2 AgG
Mechanical life	Up to 10×10^{6} operating cycles
Ideal application	$1 \mathrm{~mA} / 5 \mathrm{~V} \ldots 0.3 \mathrm{~A} / 30 \mathrm{~V}$
ES562	
Conventional thermal current $\mathrm{I}_{\text {th }}$	0.1 A
Utilization category AC-12	$30 \mathrm{~V} / 0.1 \mathrm{~A}$
Utilization category DC-13	$30 \mathrm{~V} / 0.1 \mathrm{~A}$
Min. switching current at	5 mA
Switching voltage	DC 5 V
Short circuit protection	0.125 A gG
Mechanical life	Up to 15×10^{6} operating cycles
ES572 (high temperature version)	
Conventional thermal current $\mathrm{I}_{\text {th }}$	5 A
Utilization category AC-15	$230 \mathrm{~V} / 4 \mathrm{~A}$
Utilization category DC-13	$24 \mathrm{~V} / 1 \mathrm{~A}$
Min. switching current at	10 mA
Switching voltage	DC 12 V
Short circuit protection	5 A gG
Mechanical life	5×10^{5} operating cycles (or 100 h at $204{ }^{\circ} \mathrm{C}$; manufacturer's data)
ES588 Θ	
Conventional thermal current $I_{\text {th }}$	10 A
Utilization category AC-15	$230 \mathrm{~V} / 4 \mathrm{~A}$
Utilization category DC-13	$24 \mathrm{~V} / 3 \mathrm{~A}$
Min. switching current at	1 mA
Switching voltage	DC 5 V
Short circuit protection	10 A gG
Mechanical life	Up to 10×10^{6} operating cycles
ES593	
Conventional thermal current $\mathrm{t}_{\text {th }}$	3 A
Utilization category AC-15	$230 \mathrm{~V} / 3 \mathrm{~A}$
Utilization category DC-13	$24 \mathrm{~V} / 1 \mathrm{~A}$
Min. switching current at	10 mA
Switching voltage	DC 24 V
Short circuit protection	3 AgG
Mechanical life	5×10^{5} operating cycles (manufacturer's data 5×10^{6})
Rated data with plug connector	
N01.550SVM5	
Utilization category AC-15	$30 \mathrm{~V} / 2 \mathrm{~A}$
Utilization category DC-13	$24 \mathrm{~V} / 2 \mathrm{~A}$
N01.550C1526	
Utilization category DC-13	$24 \mathrm{~V} / 2 \mathrm{~A}$
SN01.558SVM5	
Utilization category AC-15	$30 \mathrm{~V} / 4 \mathrm{~A}$
Utilization category DC-13	$24 \mathrm{~V} / 3 \mathrm{~A}$
Reliability values acc. to EN ISO 13849-1 for NBO1 with switching element ES588	
B10d	2×10^{7}
Preferred approach directions	

Figure 2: Plungers and approach directions

Figure 3: Dimension drawing of N01.../NB01... with cable entry

Figure 4: Dimension drawing/connection diagram of N01.550X... with connection cable (PUR cable, $4 \times 0.5 \mathrm{~mm}^{2}$)

Figure 5: Dimension drawing/connection diagram of N01.550/562SVM5 with plug connector M12 (SVM5, 5-pin)

Figure 6: Dimension drawing/connection diagram of N01.550C1526 with plug connector M12 (4-pin)

Figure 8: Dimension drawing of SNO1.. with cable entry

Figure 9: Dimension drawing/connection diagram of SN01.558X... with connection cable (PUR cable, $5 \times 0.5 \mathrm{~mm}^{2}$)

Figure 10: Dimension drawing/connection diagram of SN01.558SVM5 with plug connector M12 (SVM5, 5-pin)

Switching element	Wiring diagram	Terminal assignment
$\begin{aligned} & \text { ES550 } \\ & \text { ES560 } \\ & \text { ES593 } \end{aligned}$		1 4 2 1 1 1
ES553		142
ES556		(0) (0) (0)
ES562		
ES572		1 4 2 0 0 0
ES620		$\begin{array}{ccc} 1 & 4 & 2 \\ (0) \end{array}$
ES558		$\begin{array}{\|llll} 4 & 1 & 2 & 3 \\ \hline 1 & \mid & \mid & \mid \\ \hline \end{array}$
ES588		000

Figure 7: Dimension drawing of N01...MC2018/NB01.620-MC2018 with Figure 11: Switching elements, wiring diagrams and terminal assignment of special cable gland

