Safety Rope Pull Switches

SRM, SR


SR


The maximum possible span length of a pull cable switch is always dependent on the temperature fluctuations to which the system is exposed. It is possible that the pull cable switch may trip due to the fact that, owing to its temperature coefficient, the length of the steel cable can change in response to changes in temperature. Ultimately, this change in length is dependent on the length of the cable, the difference in the temperature change and the type of springs used in the pull cable switch. Overview 1 shows which cable lengths are possible as a function of change in temperature.

## Pull cable counterspring

With overstretch safeguard based on compression spring principle


| Application |  |  |
| :--- | :--- | :--- |
| Type | SR ...100/SR ...175/SRM ...175 | SR ...300/SRM ...300 |
| Spring Art. No. | $\mathbf{3 9 1 1 0 4 2 1 5 3}$ | $\mathbf{3 9 1 1 0 4 2 1 5 4}$ |
| $L_{0 \text { min. }}$ | 383 | 483 |
| $L_{\text {max. }}$ | 487 | 653 |

## Advantages of SRM / SR safety rope pull switches:

- The SR (plastic enclosure) and SRM (metal enclosure) safety rope pull switches are available with the Quickfix quick-connect system, which renders unnecessary cable eye stiffeners, cable grips and turnbuckles that are otherwise required for mounting the cable. Added to this, the time required to install the cable is drastically reduced. Versions with a conventional eye are, of course, also available.
- All variants of the SRM and especially of the SR are equipped with an integrated emergency stop impact button that can be actuated by pressing in hazardous situations. In the same way as pulling the pull cable, the safety contacts are opened and the switch is locked.
- The type SRM...E-... safety rope pull switches are optionally available with a remote indicator for monitoring the cable tension. This option has an integrated sensor unit that monitors situations in which the cable tension may overshoot or undershoot the permissible value, or triggering of the safety rope pull switch is imminent.

This electronic output signals in good time that maintenance / adjustment is required otherwise the machine will shut down. This output can also be used for event signalling purposes or optionally available indicator lamps can be connected. This connection configuration conforms to "preventative maintenance" requirements.

- During installation / adjustment of the cable span, the correct tension of the cable can be checked through the integrated inspection window. To ensure optimum cable tension as part of the adjustment procedure, the tips of the indicator arrows should be aligned with the marking.
- A second inspection window integrated in the SRM version makes it possible to check the status of the locking function and of the contacts. Yellow in the inspection window indicates that the safety rope pull switch is locked. Green in the inspection window indicates that the rope pull switch is ready for operation and the cable assembly is monitored.


## Overview 1

|  | Span L max. in metres [m] |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 50 | 55 | 60 | 65 | 70 | 75 |
| Max. temperature variation in Kelvin (K) | +/-80 K; +/-110 K |  |  |  |  |  |  |  |  |  |  |  | ' |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | +/-70 K; +/-100 K |  |  |  |  |  |  |  |  |  |  |  | ' |  |  |  | , |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | +/-60 K ; +/-90 K |  |  |  |  |  |  |  |  |  |  |  | ' |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | +/-50 K; +/-70 K |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | +/-40 K; +/-50 K |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | +/-30 K; +/-40 K |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | +/-20 K; +/-26 K |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | +/-10 K; +/-14 K |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | +/-7K;+/-9K |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SR... 100 | Max. span 25 metres |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SR... $175 / S R M . . .175$ | Max. span 37.5 metres |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SR...300/SRM... 300 | Max. span 75 metres |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

The parameter 100, 175 and 300 in the product designation indicates the force of the springs used in the rope pull switch. It should be noted that a greater actuating force is required for higher spring forces.

The indications of the temperature ranges refer to a system for emergency stop applications with return spring.
With a system without return spring, emergency stop applications are not permitted.
In this case, the above mentioned Kelvin values have to be halved.

## Installation example



## Safety Rope Pull Switches

Max. span length
(

|  |  |
| :--- | :--- |
| 6012921091 |  |
| SRM-U1Z/U1Z-LU-300 | SRM-A2921100 |
|  |  |
|  |  |

## 6012929088

6012999097

Approvals
Quickfix
with remote monitoring
(Dimensioned drawing 1)
$\square$

SRM-U1Z/U1Z-QF-300-E
SRM-A2Z/U1Z-QF-300-E

(1)


2 NC/2 NO

6012929087
SRM-U1Z/U1Z-QF-300
6012999096
SRM-A2Z/U1Z-QF-300
75 metres (Dimensioned drawing 1)

6012929085 SRM-U1Z/U1Z-QF-175

6012999094
SRM-A2Z/U1Z-QF-175


2 NC/2 NO
3 NC/ 1 NO


6012929086
6012999095 SRM-A2Z/U1Z-QF-175-E


## Technical data



| Contact type | 1 NC/1 NO (Zb) |  | 2 NC (Zb) |  |
| :---: | :---: | :---: | :---: | :---: |
| Action contacts | U1Z |  | A2Z |  |
| Circuit symbol | Slow-action contacts | $\Theta$ | Slow-action contacts |  |
| Switching diagram |  |  |  |  |
| On $\square$ OFF |  |  |  |  |

The pulling force data depend on the type of switch used. (SRM...175/SRM...300)
Tolerances: Switching point + / - 0.5 mm , actuating force + / - $15 \%$

## Safety Rope Pull Switches

| Max. span length | 75 metres (Dimensioned drawing 1) | 37.5 metres (Dimensioned drawing 2) |
| :---: | :---: | :---: |
|  |  |  |
|  | $2 \mathrm{NC} / 2 \mathrm{NO} 4 \mathrm{NC}$ | $2 \mathrm{NC} / 2$ NO 4 NC |
| Quickfix <br> (Dimensioned drawing 1) | 6011629072 6011691082 <br> SR-U2Z-O-QF-300-LO-O-O SR-A4Z-O-QF-300-LO-O-0 | 6011629071 6011691081 <br> SR-U2Z-O-QF-175-LO-O-O SR-A4Z-O-QF-175-LO-O-0 |
| Quickfix N.A. <br> (Dimensioned drawing 2) | 6011629069 6011691079 <br> SR-U2Z-NA-QF-300-LO-O-O SR-A4Z-NA-QF-300-LO-O-0 | $\begin{array}{ll}6011629068 & 6011691078 \\ \text { SR-U2Z-NA-QF-175-LO-O-O } & \text { SR-A4Z-NA-QF-175-LO-O-O }\end{array}$ |
| Eye <br> (Dimensioned drawing 3) | $\mathbf{6 0 1 1 6 2 1 0 6 6}$ $\mathbf{6 0 1 1 6 9 1 0 7 6}$ <br> SR-U2Z-O-LU-300-LO-O-O SR-A4Z-O-LU-300-LO-O-O | $\mathbf{6 0 1 1 6 2 1 0 6 5}$ $\mathbf{6 0 1 1 6 9 1 0 7 5}$ <br> SR-U2Z-O-LU-175-LO-O-O SR-A4Z-O-LU-175-LO-O-O |
| Approvals | (6) | (5) |

## Technical data

| Electrical data |  |  |
| :---: | :---: | :---: |
| Rated insulation voltage | $U_{i}$ max. | 250 V |
| Rated operating voltage | $U_{\text {e }}$ max. | 240 V |
| Conventional thermal current | $\mathrm{I}_{\text {the }}$ | 10 A |
| Utilisation category | $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}}$ | AC-15 |
| Short-circuit protection |  | 6 A gL |
| Protection class |  | II, Insu |
| Mechanical data |  |  |
| Enclosure | PA 6 GV |  |
| Ambient temperature | $-25^{\circ} \mathrm{C}$ to |  |
| Mechanical service life | $1 \times 10^{5} \mathrm{~s}$ |  |
| Switching frequency max. | $\leq 20$ /m |  |
| Mounting | $4 \times \mathrm{M} 5$ |  |
| B10d | $1 \times 10^{5} \mathrm{~m}$ |  |
| Type of connection | Cage cla |  |
| Conductor cross sections | $\leq 1.5-2$ |  |
| Cable entry | $3 \times \mathrm{M} 20$ |  |
| Protection class | IP 67 con | 0529 |
| Standards |  |  |
| VDE 0660 T100, DIN EN 60947 VDE 0660 T200, DIN EN 60947 VDE 0660 T210, DIN EN 60947 ISO 13850 |  |  |

25 metres (Dimensioned drawing 3)


2 NC/ 2 NO
4 NC

## 6011629070

6011691080
SR-U2Z-0-QF-100-LO-O-0 SR-A4Z-O-QF-100-LO-O-0


## 6011621064

6011691074
SR-U2Z-O-LU-100-LO-0-0 SR-A4Z-0-LU-100-LO-0-0


